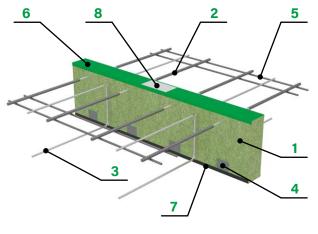

ebea KP Raccords isolants de dalles en porte-à-faux

Sommaire

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux

ebea KP Raccords isolants de dalles en porte-à-faux


ebea KP - Composants / Corps isolant	46-47
ebea KP - Isolation thermique / Protection anti-incendie	48-49
ebea KP - Isolation acoustique / Planification	50-51
ebea KP-100 – Pour dalles en porte-à-faux	52-55
ebea KPE-100 – Eléments d'angle pour dalles en porte-à-faux	56-59
ebea KP-200 – Pour dalles continues	60-63
ebea KP-300 – Pour dalles en porte-à-faux\$	64-67
ebea KPE-300 – Eléments d'angle pour dalles en porte-à-faux	68-71
ebea KP-500 – Eléments d'effort tranchant	72-75
ebea KP-600 – Eléments d'effort tranchant	76-79
ebea KP-700 – Eléments de paroi et parapets	80-83
ebea KP-800 - Eléments d'effort tranchant à décalage	84-87
ebea KP-900 – Avec réalisation d'armature sur site	88-91
ebea KPE-900 – Eléments d'angle avec réalisation d'armature sur site	92-95
ebea KP-1000 – Pour dalles continues à décalage	96-99
ebea KP-1100 – Pour dalles en porte-à-faux à armature	
	100-103
ebea KP-1200 – Pour dalles continues à armature d'effort tranchant	104-107
ebea KP-Type G – Eléments parasismiques	108–111
ebea KP-Type H – Elément d'effort tranchant en deux étapes	112-115
ebea KP-Type J – Pour dalles en porte-à-faux en deux étapes	116-119
ebea KP - Solutions spéciales	.120-121
ebea KP – Armatures réalisées sur site	122
ebea KP - Indication et Notes	123-124
ebea KP - Notice de montage	125
Légende Elément d'angle pour armatures 2 et 3	
-MBd +VBd Contient uniquement des composants Eléments	
en acier inox dans la gamme ISO affleurants Contient des éléments zingués	
au feu dans la zone de l'isolation	
± HRd \$ Version à prix réduit Protection acoustique augmentée Eléments de construction profondeurs de connexion	

ebea KP - Composants

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Composants

ebea KP Structure

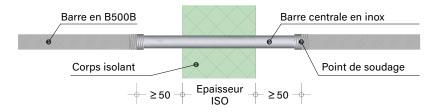
	Compos	sants	Matériaux		
1	1 Corps isolant (ISO)		SW/XPS/(FG)/(PUR)		
2	Barres de traction		Acier d'armature 1.4362, 1.4462 ou RS 1.4362/B500B		
3	Eléments Plaques		Acier de construction 1.4362 ou 1.4462		
3	de poussée Etrier		Acier d'armature 1.4362 ou 1.4462		
4	4 Tampon de pression		Béton fibré à ultra haute performance ou acier inoxydable 1.4362		
5	5 Barres transversale		Acier d'armature B500B		
6	Recouvrement dessus		Recouvrement dessus PVC vert		PVC vert
7	7 Recouvrement dessous		PVC noir		
8	8 Etiquette		Film autocollant		

ebea KP de Type barres de traction et barres de compression

Les raccords isolantes de dalles en porte-à-faux d'ebea peuvent être produites avec des barres soudées par friction (barres RS) si elles sont disponibles pour le type sélectionné. Les barres RS se composent d'une barre centrale en acier inoxydable, réf. 1.4362, et deux barres en acier d'armature B500B.

Version	Domorguoo		Classe de résistance		
	Remarques	en zone de joint	en zone de béton	Barre transversale	à la corrosion
RS*	avec barres RS	1.4362 B500B		B500B	III / moyenne
galv.	KP-/KPE-300	B500B galv.**		B500B	
VE1	entièrement inox	1.4362		B500B	III / moyenne
VE2	entièrement inox	1.4462		B500B	IV / haute

^{**} RS disponible pour les types KP/ KPE: 100, 200, 1100, 1200 (Ø 10 + 14 mm)


Les propriétés mécaniques des composants en acier inoxydable sont respectées selon l'homologation de construction générale Z-30.3-6.

ebea KP Soudage par friction

La réalisation standard avec les **barres RS** est équivalente à la réalisation en acier inox VE1 et VE2 au niveau des plus importants critères: **capacité de charge – conductivité thermique – résistance à la corrosion**

Cette équivalence est assurée par le matériau utilisé et la géométrie des barres RS.

- Changement de section dûe aux rigidités différentes
- Position assez profonde des points de soudage dans le béton

Nos contrôles de qualité continus (matériau et traction) garantissent une qualité élevée constante.

Le soudage par friction – plus précisément soudage par friction rotative – fait partie du groupe des procédés de soudage par pression. Lors du soudage par friction, on exploite la chaleur générée par la friction. Ce faisant, les pièces sont soumises à un mouvement rotatif de sorte qu'elles se touchent l'une l'autre aux surfaces de contact. Quand le matériau est chauffé jusqu'à la plastification, les pièces sont positionnées et fermement pressées les unes contre les autres.

Ce procédé permet de souder des pièces en acier de propriétés mécaniques et compositions chimiques différentes et, grâce à l'utilisation uniquement sur les points importants au niveau technique, favorise une utilisation économique de matériaux coûteux.

^{**} galv. barres de traction zinguées au feu min. 100 µm / les autres composants sont en acier inox 1.4362

ebea KP - Corps isolant

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Corps isolant

Laine de roche (SW)

Panneaux isolants en laine de roche (SW)

Spécifications du matériau isolant	
Masse volumique	$\rho_a \approx 150 \mathrm{kg/m^3}$
Conductivité thermique	$\lambda_{\text{D}} = 0.04 \text{W/mK}$
Contrainte de compression (pour 10 %)	$\sigma_{10} = 0.06 \text{ N/mm}^2$
Résistance au feu (Euroclasse / code I-I)	RF1 (A1 / 6q.3)
N° AEAI matériau isolant	N° 25112
Epaisseur [mm] avec désignation*	SW60, SW80, SW100, SW120

XPS

Panneau lisse en mousse dure de polystyrène extrudé

Spécifications du matériau isolant						
Masse volumique	$\rho_{\rm a} \approx 35 {\rm kg/m^3}$					
Conductivité thermique	$\lambda_{D} = 0.035 \text{W/mK}$					
Contrainte de compression (pour 10 %)	$\sigma_{10} = 0.3 \text{ N/mm}^2$					
Résistance au feu (Euroclasse / code I-I)	RF2 (cr) (E / 5.1)					
N° AEAI matériau isolant	N° 30442					
Epaisseur [mm] avec désignation*	XPS60, XPS80, XPS100, XPS120					

^{*}Les épaisseurs au choix sont définies en fonction du type KP

Foamglas (FG)

Panneau isolant en verre cellulaire sous une toile de verre spécial (disponible uniquement pour Type ebea KP-700)

Spécifications du matériau isolant					
Masse volumique	$\rho_{\rm a} \approx 115{\rm kg/m^3}$				
Conductivité thermique	$\lambda_{\text{D}} = 0.041 \text{ W/mK}$				
Contrainte de compression (pour 10 %)	$\sigma_{10} = 0.6 \text{ N/mm}^2$				
Résistance au feu (Euroclasse / code I-I)	RF1 E (matériau de base A1) / 6.3				
N° AEAI matériau isolant	TA-N° 5273				
Epaisseur [mm] avec désignation*	FG60, FG80, FG100, FG120				

^{*}Les épaisseurs au choix sont définies en fonction du type KP

Panneau d'isolation en XPS, FG ou PUR avec inserts supérieurs et inférieurs de plaques de silicate pour la classe de résistance au feu REI 60 (laine de roche [SW] REI 120 sans plaques de silicate)

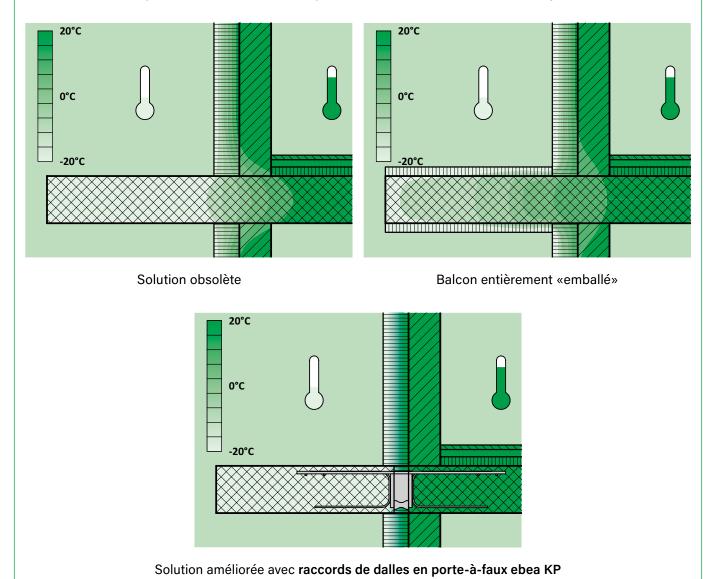
Spécifications de la plaque pare-feu					
Masse volumique	$\rho_a \approx 870 \mathrm{kg/m^3}$				
Conductivité thermique	$\lambda_{D} = 0.175 \text{W/mK}$				
Résistance au feu (Euroclasse / code I-I)	RF1 (A1 / 6.3)				
N° AEAI plaques pare-feu	N° 16118				

Avec les types d'isolation XPS, FG ou PUR, les plaques de silicate sont intégrées de manière standard.

Les matériaux susmentionnés sont disponibles comme corps isolants pour les raccords de dalles en porte-à-faux ebea KP ou pour les entretoises. Pour de plus amples informations sur l'utilisation et le processus de commande, voir les notices techniques. Sur demande il existe également la possibilité d'éléments isolants en PUR doublés d'aluminium mais seulement en épaisseur 80 mm.

^{*}Les épaisseurs au choix sont définies en fonction du type KP

ebea KP - Isolation thermique


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Isolation thermique

Isolation thermique

Les strictes exigences et normes en matière d'énergie requièrent, dans la phase de planification, des mesures assurant la minimisation des ponts thermiques et en même temps réalisables en pratique. Les objectifs sont la prévention de la condensation et des moisissures dues au refroidissement de la construction ainsi que notamment l'amélioration du bilan énergétique de l'ensemble du bâtiment. Grâce à l'utilisation des raccords de dalles en porte-à-faux ebea KP on atteint ces objectifs en matière de physique du bâtiment tout en assurant la reprise de charge et la stabilité.

L'efficacité et la performance effective des **éléments KP** dépendent largement de la situation de montage. Pour toutes les valeurs de conductibilité thermique indiquées dans ce catalogue, c'est la conductibilité thermique équivalente λ eq qui est indiquée. La conductibilité thermique équivalente λ eq d'un élément de construction composé de plusieurs matériaux de construction est la conductibilité thermique d'un matériau de construction de substitution homogène, cubique et de mêmes dimensions, qui permet d'obtenir le même effet d'isolation thermique que l'élément de construction complexe lorsqu'il est installé. Les effets tridimensionnels sont négligés. Comme l'effet tridimensionnel augmente la longueur des flux de chaleur, les conductibilités thermiques équivalentes déterminées de manière unidimensionnelle sont toujours plus importantes et donc plus sûres.

Les illustrations ci-après montrent le flux thermique avec et sans raccords de dalles en porte-à-faux ebea KP.

ebea KP - Protection anti-incendie

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Protection anti-incendie

Résistance au feu des raccords de dalles en porte-à-faux ebea KP

Les raccords de dalles en porte-à-faux ebea KP, avec des plaques de silicate intégrées, sont conformes aux prescriptions de l'Association des établissements cantonaux d'assurance incendie (AEAI).

Les essais au feu de nos raccords de dalles en porte-à-faux a porté sur leur qualification et la détermination de leur classe de résistance au feu. Outre la capacité de charge, on a également vérifié leur fonction de cloisonnement.

Grâce à la construction ignifuge des éléments et au test d'incendie réussi, nos éléments ont été inclus dans le registre de protection contre l'incendie de l'AEAI. Le tableau ci-dessous résume la classification des types de protection contre l'incendie des types ebea KP en fonction des demandes de protection contre l'incendie accordées par l'AEAI.

Définitions de l'attestation d'utilisation AEAI:

Groupe 261 Constructions et systèmes de construction

Produit Raccords isolants de dalles

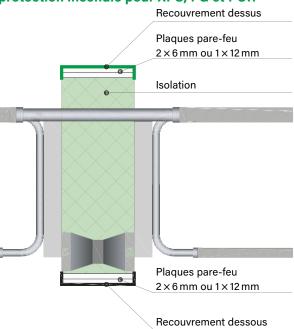
en porte-à-faux ebea KP

Directives de contrôle EN 1363-1, EN 1366-4, EN-1365-5

Evaluation Classe de résistance au feu REI 120 RF1 (SW)

Classe de résistance au feu REI 60 (XPS, FG, PUR)

Classes de résistance au feu par type


Type KP	N°	REI 60 AEAI 308	897	REI 120 N° AEAI 30891		
Matériau	XPS	FG	PUR	SW		
isolant	(avec plaques de silicate)			(sans plaques de silicate)		
KP-100	✓	×	✓	✓		
KPE-100	✓	×	✓	✓		
KP-200	✓	×	✓	✓		
KP-300	✓	×	✓	✓		
KPE-300	✓	×	✓	✓		
KP-500	✓	×	✓	✓		
KP-600	✓	×	✓	✓		
KP-700	✓	✓	✓	✓		
KP-800	✓	×	✓	✓		
KP-900	✓	×	✓	✓		
KPE-900	✓	×	✓	✓		
KP-1000	✓	×	✓	✓		
KP-1100	✓	×	✓	✓		
KP-1200	✓	×	✓	✓		
KP-Type G	✓	×	✓	✓		
KP-Type H	✓	×	✓	✓		
KP-Type J	✓	×	✓	✓		
KP-Type spéciaux	✓	✓	V	✓		

Structure des corps isolants en vue de la protection incendie pour XPS, FG et PUR

Vereinigung Kantonaler

Association des établissements

cantonaux d'assurance incendie

Brève description des qualités de résistance au feu

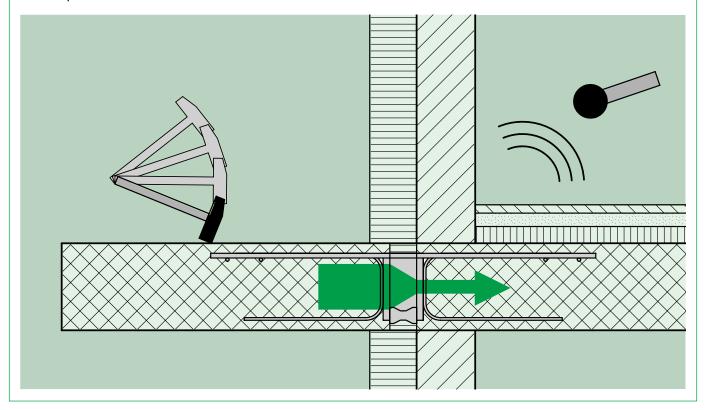
- R Capacité de charge; aucune perte de stabilité.
- E Cloisonnement; empêchement de la propagation du feu au côté non concerné.
- I Isolation thermique; limitation de la transmission de feu ou chaleur au côté opposé.

Attention! Au cas où les raccords de dalles en porte-à-faux ebea KP ne seraient pas disposés en continu pour une construction de balcon REI, il faudra impérativement insérer des entretoises KP conformes aux classes REI correspondantes.

ebea KP - Isolation acoustique

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Isolation acoustique

Isolation acoustique


Les **éléments ebea KP-600 / KP-1100 / KP-1200** sont des versions phoniquement optimisées. Elles sont utilisées en cas d'exigence de protection acoustique élevées. Les valeurs indiquées reposent sur des mesures déterminées à la haute école de Lucerne. Des mesures effectuées sur des objets existants confirment l'exactitude de ces valeurs.

Les éléments testé avaient une épaisseur d'isolation de 80 mm en laine de roche (SW) et ont obtenus les valeurs d'isolation phonique suivantes:

ebea KP Type standard	Valeur d'isolation phonique ΔL _w [dB]
ebea KP-1103 4×10-1 Ds180 SW80 L1000	13.0
ebea KP-1106 6×14-4 Ds180 SW80 L1000	9.7
ebea KP-602-2 Ds180 SW80 L1000	21.5
ebea KP-605-5 Ds180 SW80 L1000	15.3
ebea KP-100 6×14-3 Ds180 SW80 L1000	6.2

Les valeurs données ne sont qu'indicatives et doivent être réévaluées par un physicien du bâtiment. L'efficacité effective d'une isolation phonique ne peut être démontrée que par un examen global de la construction par un physicien du bâtiment ou par une mesure du niveau sonore sur place.

Si vous avez des questions sur la valeur d'isolation acoustique d'autres types d'éléments ou de matériaux isolants, veuillez contacter notre équipe d'assistance technique par courrier électronique à l'adresse suivante: technik@ruwa-ag.ch ou par téléphone au +41 34 432 35 35. Nous sommes toujours heureux de vous aider et attendons avec impatience de vos nouvelles.

ebea KP - Planification

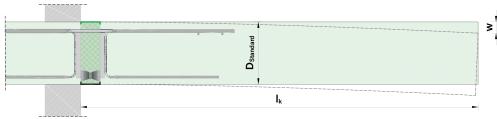
Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Planification

Choix du système porteur

Les efforts tranchants du raccord peuvent être déterminés au moyen d'un calcul manuel avec des poutres simplifiées (théorie des poutres) ou d'un modèle MEF. Le choix de la méthode incombe au planificateur. Pour la sollicitation des éléments KP, il faut prendre en compte la force d'appui pour les modèles simplifiés, tandis que pour les calculs MEF plus complexes, il faut considérer la sollicitation des articulations et des éléments de raccord. Le calcul des efforts tranchants se fait à l'état limite de la capacité de charge.

Modélisation MEF

Pour la modélisation incluant des **raccords de dalles en porte-à-faux ebea KP** calculée avec la methode MEF, il faut suivre les étapes suivantes:


- Les éléments à séparer au niveau thermique doivent être découplés tout au long de la ligne de connexion avec des raccords.
- 2. La rigidité des articulations doit être réglée en fonction de la disposition envisagée des éléments.
- 3. La charge spécifiée et le calcul MEF permettent de déterminer les sollicitations des raccords (v_d, m_d).

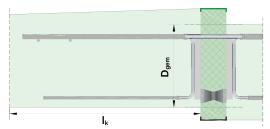
Rigidités	[k/Nm/rad]	J [kN/m]
ebea KP	Valeurs k*	100'000
Entretoises	0	0

^{*} Selon tableaux de dimensionnement

Déformation

La déformation effective résulte de deux composants:

^{*} Indication des valeurs de rigidités basées sur des limites supérieures et inférieures vérifiées au moyen d'essais. Les valeurs indiquées dans le catalogue se basent sur les limites inférieures et se situent donc dans une zone sûre en ce qui concerne le comportement à la déformation et aux vibrations. Les rigidités à la rotation peuvent varier selon la diffusion des matériaux. On doit en tenir compte dans la modélisation.


Règles de construction

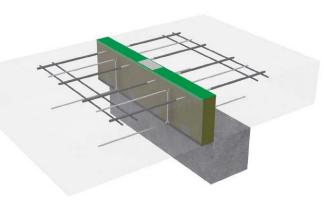
Pour éviter le surdimensionnement du raccord et les vibrations d'une construction en porte-à-faux, il faudra suivre la recommandation suivante:

Proportions géométriques							
D_{gem} > $I_k/10$ optimal							
I _k /10	≥	\mathbf{D}_{gem}	≥	I _k /12	sensible aux vibrations		
		D_{gem}	<	I _k /12	très sensible aux vibrations		

D_{gem} Hauteur totale effective, correspond à la hauteur d'élément Ds

I_k Longueur saillie

La vulnérabilité à la vibration d'un balcon ne dépend pas seulement de ce rapport géométrique, mais aussi de la charge et des supports. Ces recommandations permettent une première évaluation de la faisabilité et ne remplacent pas une appréciation de l'élément et de son comportement à la déformation à l'aide d'un calcul dynamique.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-100 – Description du produit

Description du produit

Les éléments en porte-à-faux **ebea KP-100**, utilisés pour des éléments de construction en saillie, servent à absorber des moments négatifs (-M) ainsi que l'effort tranchant positif et négatif (± V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en trois versions différentes.

Application

Paramètre du corps isolant et des composants en acier

L Longueur élément

D Hauteur d'élément

ISO Epaisseur isolanteS Longueur barres

Ø Diamètre barres

H Hauteur plaques de poussée

E Ecart barres

Système statique

Réalisations et matériaux utilisés

Matériaux utilisés		RS	VE1	VE2
Isol	ation	XPS, laine de roche (SW), PUR		
	e traction le poussée	1.4362 + B500B 1.4362 1.4462		
Tampon D140 à 170 de pression à partir de D180		1.4362		non disponible
		BFUP (à partir d'u	ne épaisse	ur <mark>ISO</mark> de 80 mm)

- RS Version soudée par friction pour classe de résistance à la corrosion III (moyenne)
- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	isolant		Standard	ı	Disponible			
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau	
Hauteur	D [mm]	140	300	20	130	440	5	
Longueur	L [mm]	200	1000	-	200	1200	50	
Epaisseur	ISO [mm]		80, 120		60, 80, 100, 120			

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur	barres S [mm]		Diamètre barres Ø [mm]								
	verses de fer r côté	8	10 Standard	12	14 Standard	16					
RS	ISO 80-120	-	980	-	1240	-					
VE1, VE2	ISO 80-120	800	1000	1140	1320	1480					

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-100 – Tableaux de dimensionnement

Inax

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

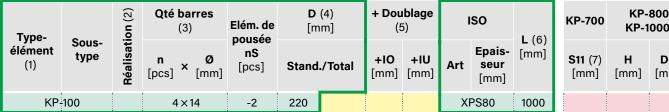
Мо	oments d	le cal	lcul (- N	/I _{Rd}) e	t rigid	ité ro	tationr	nelle	des élé	émen	ts de ti	ractio	n et de	com	pressio	n (k ₁)
M _{Rd} [kNm/pcs]	k [kNm/rad]		Barres de traction n [pcs] × Ø [mm]														
Hauteur st	lauteur standard ISO 2×10 2×14			!×14	4×10 6×10		4	×14	6	×14	8×14		10×14				
Ds [mm]	M _{Rd}	k	M_{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k
0	140	6	500	12	800	12	1000	18	1500	23	1600	35	2400	47	3200	58	4000
30 8 (ab	160	8	850	15	1350	16	1650	24	2500	30	2700	45	4050	61	5400	76	6750
voii man	180	10	1350	19	2200	19	2750	29	4100	37	4450	56	6650	74	8850	93	11100
olation ISO 8 et 120 voir e commande)	200	11	1900	22	3100	23	3850	34	5750	44	6250	66	9350	88	12500	111	15600
l'iso 30 e de a	220	13	2550	26	4200	26	5100	40	7700	51	8350	77	12550	102	16750	128	20900
r de 30, 1 laire	240	15	3300	29	5400	30	6600	45	9900	58	10800	87	16200	116	21600	145	27000
Épaisseur de l'isolation ISO 80 (ISO 60, 100 et 120 voir le formulaire de commande)	260	17	4100	33	6750	34	8250	50	12350	65	13550	98	20300	130	27100	163	33850
pais) le fo	280	19	5050	36	8300	37	10100	56	15100	72	16600	108	24900	144	33200	180	41500
ш	300	20	6050	40	10000	41	12100	61	18150	79	19950	119	29950	158	39900	198	49900
	plaques de pcs] à choix		1 1				1-3	1	I-5		1-3	1	-5		I-7		1-9
Languaur ICO	L _{et} [mm] = 200									10	000						
Longueur ISO	L _{min} [mm] =		200		200		400		600		400	(600	1	300	1	000
Egort	E _{st} [mm] =		10	00			250		167		250		167		125		100
Ecart	E _{min} [mm] =									100							

	Résist	ance	à l'ef	ort t	ranch	ant ((± V _{Rd})	et ri	gidité	en r	otatio	n des	s élém	ents	de po	ouss	ée (k₂))	
	/ _{Rd} /pcs]	Épaisseur de l'isolation ISO 80 (ISO 60, 100 et 120 voir le formulaire de commande)																	
Ds	Н	4							Quantité	plaque	s de pous	s ée [pc	s]						
[mm]	[mm]	. 1 2				3		4		5		6		7		8		9	
	[111111]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k
140	80	22	100	43	150	65	250	86	300	108	400	129	450	151	550	172	600	194	700
160	100	27	150	54	300	81	450	108	600	135	750	162	900	189	1100	216	1250	243	1400
180	120	33	300	65	550	98	800	130	1100	163	1350	195	1600	228	1900	260	2150	293	2400
200	140	38	450	76	850	114	1250	152	1700	190	2100	228	2550	266	2950	304	3350	342	3800
220	160	44	750	87	1450	131	2200	174	2900	218	3650	261	4400	305	5100	348	5800	392	6550
240	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
260	200	55	1350	109	2650	164	4000	218	5300	273	6600	327	7900	382	9200	436	10550	491	11850
280	220	60	1700	120	3350	180	5050	240	6750	300	8450	360	10100	420	11800	480	13500	540	15150
300	240	65	2100	130	4200	195	6300	260	8450	325	10550	390	12650	455	14750	520	16850	585	18950

^{*} En raison de la présentation décomposée des rigidités en rotation k_1 et k_2 et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

- La rigidité rotationnelle de l'élément défini est déterminée comme suit: k = k₁ + k₂ avec le **formulaire de commande ebea KP**, la rigidité rotationnelle des éléments définis peut être déterminée et affichée automatiquement. Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et 25 mm en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).

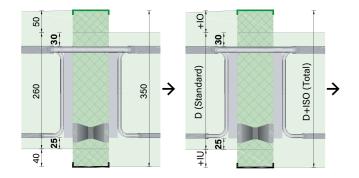


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Spécifications

Spécifications

La définition des éléments KP-100 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard


KP-1000 Н DH [mm] [mm]

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 52. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée	D (4) [mm]	+ Dou	_	ISO		
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]	
	260 <mark>/350</mark>	50	40			

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

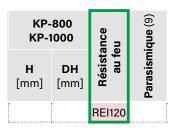
Longueur minimale L_{min} = Nombre des barres de traction × 100 mm Longueur maximale $L_{max} = 1'200 \text{ mm}$

ISO L(6) **Epais-**[mm] Art seur [mm] 1200

Les éléments plus longs doivent être composés de deux ou plusieurs éléments. Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (- M_{Bd}) et rigidité rotationnelle des éléments de traction et de compression (k₁)» voir page 53.

Nombre des éléments de poussée

Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).


Qté barres (3)	Elém. de	D (4) [mm]
n Ø [pcs] × [mm]	poussée nS [pcs]	Stand./Total
4×14	-3	220

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | Spécifications

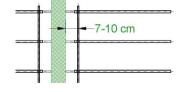

Résistance au feu

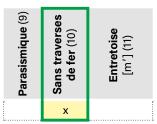
La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.





Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Longueur	barres S [mm]		Diamètre barres Ø [mm]							
•	verses de fer	8	10 Standard	12	14 Standard	16				
RS	ISO 80-120	-	1300	-	1660	-				
VE1, VE2	, VE2 ISO 80-120		1380	1560	1840	2040				

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses	Entretoise	Remarques
de fer (10)	[m′] (11)	/N°
	3.0	

Conductivité thermique équivalente λ eq

λ _{eq} [W/(mK)]			SW	sans plac	ques de si	licate				
Ds [mm]	2×10-1	2×14-1	4×10-1	6×10-2	4×14-2	6×14-3	8×14-4	10 × 14-5		
140	0.4023	0.5903	0.1507	0.2232	0.2601	0.3702	0.4803	0.5903		
160	0.3944	0.5589	0.1444	0.2153	0.2476	0.3514	0.4551	0.5589		
180	0.3687	0.4954	0.1316	0.1973	0.2221	0.3132	0.4043	0.4954		
200	0.3658	0.4797	0.1284	0.1936	0.2159	0.3038	0.3918	0.4797		
220	0.4178 0.5214		0.1367	0.2123	0.2326	0.3288	0.4251	0.5214		
240	0.4174	0.5124	0.1349	0.2104	0.2290	0.3235	0.4179	0.5124		
260	0.4172	0.5049	0.1333	0.2088	0.2259	0.3189	0.4119	0.5049		
280	0.4170	0.4984	0.1320	0.2074	0.2233	0.3150	0.4067	0.4984		
300	0.4168	0.4927	0.1309	0.2062	0.2211	0.3116	0.4022	0.4927		
$ \begin{array}{c} \text{Longueur} \\ \text{standard L}_{\text{st}} \\ \text{[mm]} = \end{array} $	20	00		1000						

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-100 - Description du produit

Description du produit

Les éléments d'angle pour dalles en porte-à-faux **ebea KPE-100** sont utilisés pour des éléments de construction en saillie et servent à absorber des moments négatifs (-M) ainsi que l'effort tranchant positif et négatif (± V). La grande couvertures de béton du **KPE-100** permet de l'utiliser comme élément d'angle en combinaison avec un **élément ebea KP-100**. Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est adapté à l'élément en porte-à-faux **ebea KP-100** et est disponible en trois versions différentes. Les deux éléments (**ebea KP-100** et **ebea KPE-100**) doivent être commandés et installés séparément.

Application KPE-100

Paramètre du corps isolant et des composants en acier

- L Longueur élément
- D Hauteur d'élément
- ISO Epaisseur isolante
- S Longueur barres
- Diamètre barres
- H Hauteur plaques de poussée
- E Ecart barres

Système statique

Réalisations et matériaux utilisés

Matéria	ux utilisés	RS	VE1	VE2		
Isol	ation	XPS, laine de roche (SW), PUR				
	le traction de poussée	1.4362 + B500B	1.4362	1.4462		
Tampon	D 160 à 190	1.4362		non disponible		
Tampon de pression	à partir de D 200	BFUP (à partir d'une épaisseur ISO de 80 m				

- RS Version soudée par friction pour classe de résistance à la corrosion III (moyenne)
- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corps isolant			Standard		Disponible			
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau	
Hauteur	D [mm]	160	300	20	150	440	5	
Longueur	L [mm]	200	1000	-	200	1200	50	
Epaisseur	ISO [mm]		80, 120		60), 80, 100, 1	120	

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur	barres S [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
RS	ISO 80-120	-	980	-	1240	-
VE1, VE2	ISO 80-120	800	1000	1140	1320	1480

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-100 – Tableaux de dimensionnement

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

Mo	Moments de calcul (- M _{Rd}) et rigidité rotationnelle des éléments de traction et de compression (k ₁)																
M _{Rd} [kNm/pcs]	k [kNm/rad]								rres de tra [pcs] × Ø [ı								
Hauteur st	andard ISO	2	×10	2	×14	4	×10	6×10		4	×14	6×14		8×14		10×14	
Ds [mm]	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k
90	160	7	600	13	950	13	1150	20	1750	25	1850	38	2800	50	3700	63	4650
ISO oir ande	180	8	1000	16	1650	17	2050	25	3050	32	3300	48	4900	64	6550	80	8200
olation ISO 8 tt 120 voir commande)	200	10	1500	19	2450	20	3000	30	4500	39	4850	58	7300	78	9700	97	12150
sola et 12 e co	220	12	2050	23	3350	24	4150	36	6200	46	6750	69	10100	92	13500	115	16850
e l'is ,100 re d	240	14	2750	26	4450	27	5450	41	8200	53	8950	79	13400	106	17900	132	22350
isseur de l'isolation IS (ISO 60, 100 et 120 voir formulaire de comman	260	15	3500	30	5750	31	7000	46	10500	60	11450	90	17200	120	22900	150	28650
.≌ - ⊊	280	17	4350	33	7150	34	8700	52	13050	67	14250	100	21400	134	28550	167	35700
Épa le	300	19	5300	37	8700	38	10550	57	15850	74	17400	111	26100	148	34800	185	43500
	plaques de pcs] à choix		1		1		1-3	1-5		1-3		1-5		1-7		1-9	
Language ICO	L _{st} [mm] =		20	00							1	000		,			
Longueur ISO	L _{min} [mm] = 200			400			600	400		600			300	1	000		
Egort	E _{st} [mm] = 100	•		250		167	250		167		125		100				
Ecart	Ecart E _{min} [mm] =									100				•		•	

		Ré	sistan	ce à l'	effort	tranc	hant ($\pm V_{Rd}$) et rig	idité	en rot	ation	des él	éme	nts de	pous	sée (k	2)	
V [kN/						É	paisseur d	le l'isola	tion ISO 80) (ISO 60,	100 et 120	voir le fo	rmulaire de	comma	inde)				
Ds	н								Quantit	é plaque	s de pous	sée [pcs]							
[mm]	[mm]		1		2		3		4		5		6		7		8		9
[]	[]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V _{Rd}	k
160	80	22	50	43	150	65	250	86	300	108	350	129	450	151	550	172	600	194	650
180	100	27	150	54	300	81	450	108	650	135	800	162	950	189	1100	216	1250	243	1400
200	120	33	250	65	550	98	800	130	1050	163	1350	195	1600	228	1900	260	2150	293	2400
220	140	38	450	76	850	114	1250	152	1700	190	2100	228	2500	266	2950	304	3400	342	3800
240	160	44	700	87	1500	131	2200	174	2950	218	3650	261	4350	305	5100	348	5850	392	6550
260	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
280	200	55	1300	109	2600	164	3950	218	5250	273	6550	327	7900	382	9200	436	10550	491	11850
300	220	60	1650	120	3400	180	5100	240	6750	300	8450	360	10150	420	11800	480	13500	540	15200

^{*} En raison de la présentation décomposée des rigidités en rotation k₁ et k₂ et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

- La rigidité rotationnelle de l'élément défini est déterminée comme suit: k = k₁ + k₂ avec le formulaire de commande ebea KP, la rigidité rotationnelle des éléments définis peut être déterminée et affichée automatiquement. Les valeurs de capacité de charge sont calculées pour une résistance minimale du béton de C25/30. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 45 mm en haut et 30 mm en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).

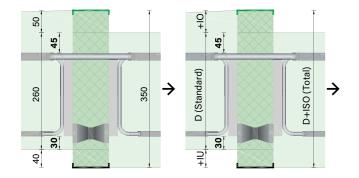
Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-100 - Spécifications

Spécifications

La définition des éléments KPE-100 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard

Type-	0	ion (2)	Qté barres (3)	Elém. de pousée		(4) ım]	+ Doublage (5)		ISO		L (6)	KP-700	KP-1	800 1000
élément (1)	Sous- type	Réalisation	n × Ø [pcs] × [mm]	nS [pcs]	Stand	./Total	+IO [mm]	+IU [mm]	Art	Epais- seur [mm]	[mm]	S11 (7) [mm]	H [mm]	DH [mm
KPE-	100		6×14	-5	220				X	PS80	1000			


P-1000 DH [mm]

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 56. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée	D (4) [mm]	+ Dou	_	ISO				
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]			
	260 <mark>/350</mark>	50	40					

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

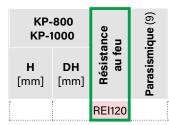
Longueur minimale L_{min} = Nombre des barres de traction × 100 mm Longueur maximale $L_{max} = 1'200 \text{ mm}$

ISO L(6) **Epais-**[mm] seur Art [mm] 1200

Les éléments plus longs doivent être composés de deux ou plusieurs éléments. Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (- M_{Bd}) et rigidité rotationnelle des éléments de traction et de compression (k₁)» voir page 57.

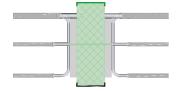
Nombre des éléments de poussée

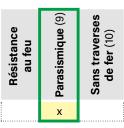
Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).


Qté barres (3)	Elém. de poussée	D (4) [mm]
n Ø [pcs] × [mm]	nS [pcs]	Stand./Total
6×14	-3	220

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-100 – Spécifications

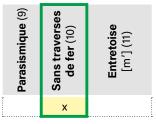
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Longueur	barres S [mm]		Diamètre barres Ø [mm]										
•	verses de fer	8	10 Standard	12	14 Standard	16							
RS	ISO 80-120	-	1300	-	1660	-							
VE1, VE2	ISO 80-120	1080	1380	1560	1840	2040							

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

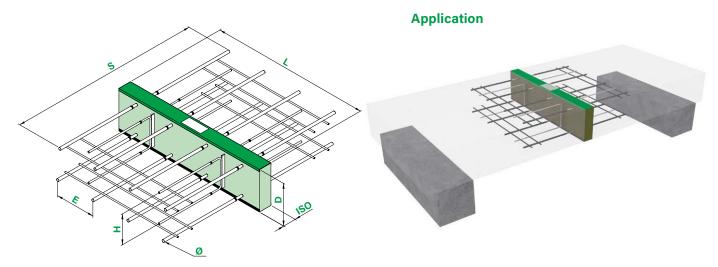
Sans traverses	Entretoise	Remarques
de fer (10)	[m'] (11)	/N°
	3.0	

Conductivité thermique équivalente λeq

λ_{eq} [W/(mK)]			SW	sans plac	ques de si	licate		
Ds [mm]	2×10-1	2×14-1	4×10-1	6×10-2	4×14-2	6×14-3	8×14-4	10 × 14-5
160	0.3570	0.5215	0.1369	0.2003	0.2326	0.3289	0.4252	0.5215
180	0.3355	0.4621	0.1249	0.1840	0.2088	0.2933	0.3777	0.4621
200	0.3358	0.4498	0.1224	0.1816	0.2039	0.2859	0.3679	0.4498
220	0.3361	0.4398	0.1204	0.1796	0.1999	0.2799	0.3598	0.4398
240	0.3863	0.4812	0.1286	0.1979	0.2165	0.3047	0.3930	0.4812
260	0.3884	0.4761	0.1276	0.1973	0.2144	0.3016	0.3889	0.4761
280	0.3902	0.4716	0.1267	0.1967	0.2127	0.2990	0.3853	0.4716
300	0.3918	0.4678	0.1259	0.1962	0.2111	0.2967	0.3822	0.4678
Longueur standard L _{st} [mm] =	20	00			10	000		-

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-200 - Description du produit

Description du produit

Les éléments en porte-à-faux **ebea KP-200** sont utilisés pour des dalles continues et servent à absorber des moments négatifs et positifs (± M) ainsi que l'effort tranchant positif et négatif (± V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en trois versions différentes. La disposition des éléments d'angles peut être résolue avec des éléments de plus petite hauteur Ds et un doublement correspondant. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-200**.

Paramètre du corps isolant et des composants en acier

L Longueur élément

D Hauteur d'élément

ISO Epaisseur isolanteS Longueur barres

Diamètre barres

H Hauteur plaques de poussée

E Ecart barres

Système statique

Réalisations et matériaux utilisés

Matériaux utilisés Isolation Barres de traction et barres de compression Plaques de poussée	RS	VE1	VE2
Isolation	XPS, laine de r	oche (SW)	PUR
Barres de traction et barres de compression	1.4362 + B500B	1 4060	1 // / / / / /
Plaques de poussée	1,430Z + B300B	1.4302	1.4402

- RS Version soudée par friction pour classe de résistance à la corrosion III (moyenne)
- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corns	isolant		Standard		Disponible						
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau				
Hauteur	D [mm]	140	300	20	120	440 5					
Longueur	L [mm]	200	1000	-	200	50					
Epaisseur	ISO [mm]		80, 120		60, 80, 100, 120						

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur	barres \$ [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
RS	ISO 80-120	-	980	-	1240	-
VE1, VE2	ISO 80-120	800	1000	1140	1320	1480

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-200 - Tableaux de dimensionnement

Іппх

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

Moments de calcul ($\pm M_{Rd}$), forces normales ($\pm N_{Rd}$) et rigidité rotationnelle des éléments de traction et de compression (k_1)

M_{Rd} [kNm/pcs] $(N_d = 0)$	k [kNm/rad]									de tracti × Ø [mm							
Hauteur sta	andard ISO	2	×10	2	×14	4	×10	6	×10	4×14		6×14		8×14		10×14	
Ds [ı	mm]	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M_{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k
0	140	5	250	11	300	10	450	16	700	21	650	32	950	42	1300	53	1600
30 8 (ab)	160	7	400	14	550	13	800	20	1150	27	1100	41	1650	55	2200	68	2750
on IS voii man	180	8	600	17	850	16	1150	25	1750	34	1650	51	2500	68	3300	84	4150
olation ISO 8 et 120 voir commande)	200	10	800	20	1150	19	1650	29	2450	40	2350	60	3500	80	4700	100	5850
l'iso 00 e de	220	11	1100	23	1550	22	2150	33	3250	47	3150	70	4700	93	6300	116	7850
Épaisseur de l'isolation ISO 80 (ISO 60, 100 et 120 voir le formulaire de commande)	240	13	1400	26	2050	25	2800	38	4200	53	4050	79	6100	106	8150	132	10150
seu ISO Imu	260	14	1750	30	2550	28	3500	42	5250	59	5100	89	7650	119	10200	148	12750
pais) le fo	280	16	2150	33	3150	31	4250	47	6400	66	6250	98	9400	131	12500	164	15650
,	300	17	2550	36	3750	34	5100	51	7650	72	7550	108	11300	144	15050	180	18850
N _{Rd} [kl			149		319		297	446		637		956		1274		1593	
Quantité p poussée [laques de pcs] à choix		1 1		1	1-3	1	I-5		1-3	1	-5	1	-7	1	1-9	
Longuour ICO	L_{st} [mm] =		200							1	000						
Longueur ISO	L _{min} [mm] = 200				400	(600		400	6	600	}	300	1	000		
Foort	E _{st} [mm] =		10	00			250		167		250	1	167		25		100
Ecart	E _{min} [mm] =		100			100											

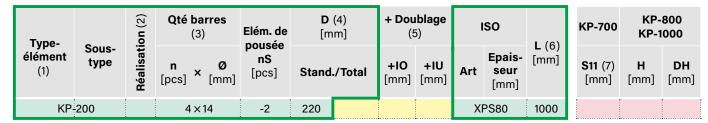
Résistance à l'effort tranchant (± V_{Rd}) et rigidité en rotation des éléments de poussée (k₂)

	rd [pcs]					Épa	isseur de	l'isolati	on ISO 80	(ISO 60	, 100 et 120	voir le f	ormulaire	de comi	mande)				
Ds	Н		***************************************	••••••	•	***************************************	•	•••••	Quantité	plaque	s de pous	s ée [pc	s]	•	•	•	***************************************	***************************************	
[mm]	[mm]		1		2		3	4 5			6		7		8		9		
[]	[,,,,,,]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k
140	80	22	100	43	150	65	250	86	300	108	400	129	450	151	550	172	600	194	700
160	100	27	150	54	300	81	450	108	600	135	750	162	900	189	1100	216	1250	243	1400
180	120	33	300	65	550	98	800	130	1100	163	1350	195	1600	228	1900	260	2150	293	2400
200	140	38	450	76	850	114	1250	152	1700	190	2100	228	2550	266	2950	304	3350	342	3800
220	160	44	750	87	1450	131	2200	174	2900	218	3650	261	4400	305	5100	348	5800	392	6550
240	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
260	200	55	1350	109	2650	164	4000	218	5300	273	6600	327	7900	382	9200	436	10550	491	11850
280	220	60	1700	120	3350	180	5050	240	6750	300	8450	360	10100	420	11800	480	13500	540	15150
300	240	65	2100	130	4200	195	6300	260	8450	325	10550	390	12650	455	14750	520	16850	585	18950

^{*} En raison de la présentation décomposée des rigidités en rotation k₁ et k₂ et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

- La rigidité rotationnelle de l'élément défini est déterminée comme suit: k = k₁ + k₂ avec le formulaire de commande ebea KP, la rigidité rotationnelle des éléments définis peut être déterminée et affichée automatiquement. Les valeurs de capacité de charge sont calculées pour une résistance minimale du béton de C25/30. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).

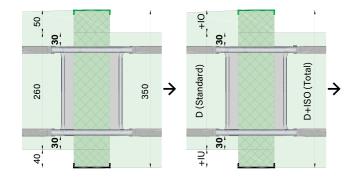


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-200 - Spécifications

Spécifications

La définition des éléments KP-200 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 60. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée	D (4) [mm]	+ Dou	_	I	so
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]
	260 <mark>/350</mark>	50	40		

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre des barres de traction <math>\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

Les éléments plus longs doivent être composés de deux ou plusieurs éléments. Les longueurs

ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (± M_{Rd}), forces normales (± N_{Rd}) et rigidité rotationnelle des éléments de traction et de compression (k₁)» voir page 61.

Nombre des éléments de poussée

Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).

Qté barres (3)	Elém. de	D (4) [mm]
n Ø [pcs] × [mm]	poussée nS [pcs]	Stand./Total
4×14	-3	220

ISO

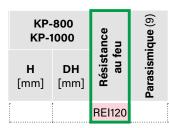
Art

Epais-

seur

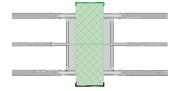
[mm]

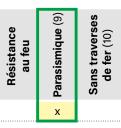
L (6)


[mm]

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-200 - Spécifications

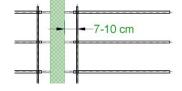
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

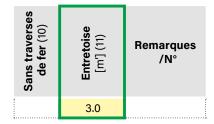
Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.





Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.


Longueur	barres S [mm]		Diamètre barres Ø [mm]										
•	verses de fer	8	10 Standard	12	14 Standard	16							
RS	ISO 80-120	-	1300	-	1660	-							
VE1, VE2	ISO 80-120	1080	1380	1560	1840	2040							

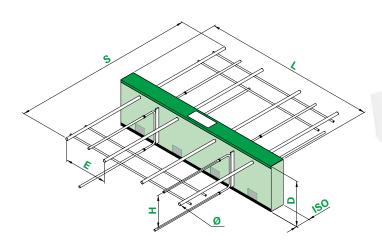
Entretoises

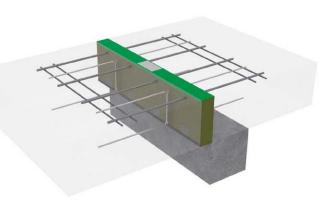
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]			SW	sans plac	ques de si	licate		
Ds [mm]	2×10-1	2×14-1	4×10-1	6×10-2	4×14-2	6×14-3	8×14-4	10 × 14-5
140	0.3788	0.5400	0.1413	0.2091	0.2400	0.3400	0.4400	0.5400
160	0.3739	0.5149	0.1361	0.2029	0.2299	0.3249	0.4199	0.5149
180	0.3700	0.4953	0.1321	0.1981	0.2221	0.3132	0.4043	0.4953
200	0.3669	0.4797	0.1289	0.1943	0.2159	0.3038	0.3918	0.4797
220	0.4188	0.5214	0.1371	0.2129	0.2325	0.3288	0.4251	0.5214
240	0.4184	0.5124	0.1353	0.2109	0.2290	0.3234	0.4179	0.5124
260	0.4181	0.5048	0.1337	0.2093	0.2259	0.3189	0.4119	0.5048
280	0.4178	0.4984	0.1323	0.2079	0.2233	0.3150	0.4067	0.4984
300	0.4175	0.4927	0.1312	0.2067	0.2211	0.3116	0.4022	0.4927
Longueur standard L _{st} [mm] =	20	00			10	100		

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.


Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-300 - Description du produit

Description du produit

Les éléments en porte-à-faux **ebea KP-300** sont utilisés pour des éléments de construction en saillie et servent à absorber des moments négatifs (-M) ainsi que l'effort tranchant positif et négatif (±V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Cet élément doté de barres galvanisées à chaud représente une alternative économique à l'élément pour dalles en porte-à-faux **ebea KP-100**.

Application

Paramètre du corps isolant et des composants en acier

L Longueur élément

D Hauteur d'élémentISO Epaisseur isolante

S Longueur barres

Diamètre barres

H Hauteur plaques de poussée

E Ecart barres

Système statique

Réalisations et matériaux utilisés

Matériau	ıx utilisés	Version standard	VE1	VE2			
Isol	ation	XPS, laine de roch	ie (SW), PUI	3			
Barres d	e traction	B500B galv.	non dis	ponible			
Plaques o	le poussée	1.4362	non dis	ponible			
Tampon	D 140 à 170	1.4404	non dis	ponible			
de pression	à partir de D 180	UHFB non disponi					

Standard

Version galvanisée à chaud

Dimensions du corps thermo-isolant (ISO)

Corns	isolant		Standard	l	Disponible						
Corps	isolant	Min.	Max	Niveau	Min.	Max.	Niveau				
Hauteur	D [mm]	140	300	20	130	440	5				
Longueur	L [mm]	200	1000	-	200	1200	50				
Epaisseur	ISO [mm]		80, 120		60), 80, 100, 1	20				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

•	barres \$ [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
Standard	ISO 80-120	-	860	-	1090	-

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-300 – Tableaux de dimensionnement

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

M	oments	de c	alcul (- M _R	d) et ri	gidi	té rota	tion	nelle d	les é	lémen	ts d	e tract	ion	et de c	omp	ressio	n (k ₁)
M _{Rd} [kNm/pcs]	k [kNm/rad]								res de trac [pcs] × Ø [r										
Hauteur st	tandard ISO		2×10		2×14		4×10	6×10		4×14			5×14	6×14		8×14		10 × 14	
Ds	[mm]	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k
0	140	5	550	9	900	9	1050	14	1600	18	1750	22	2200	27	2650	36	3500	45	4400
80 (9)	160	6	900	12	1500	12	1800	18	2700	23	2950	29	3700	35	4450	47	5900	58	7400
voi:	180	7	1600	14	2550	15	3150	22	4750	29	5150	36	6450	43	7700	57	10300	72	12850
l'isolation ISO 80 00 et 120 voir : de commande)	200	9	2200	17	3650	18	4450	26	6650	34	7250	43	9050	51	10900	68	14500	85	18150
l'iso 00 e de	220	10	2950	20	4850	20	5900	31	8850	39	9700	49	12150	59	14600	79	19450	98	24300
r de 60, 1 laire	240	12	3800	22	6250	23	7600	35	11400	45	12550	56	15700	67	18800	89	25100	112	31350
Épaisseur de l'is (ISO 60, 100 le formulaire de	260	13	4750	25	7850	26	9500	39	14250	50	15700	63	19650	75	23600	100	31450	125	39300
pais) le fo	280	14	5800	28	9650	29	11650	43	17450	55	19250	69	24100	83	28900	111	38550	139	48150
,m	300	16	7000	30	11600	31	13950	47	20950	61	23150	76	28950	91	34750	122	46350	152	57950
	plaques de [pcs] à choix		1		1		1-3		1-5		1-3		1-4		1-5		1-7		1-9
Longuour ICO	L _{st} [mm] =		2	00									1000						
Longueur ISO	L _{min} [mm] =		2	00			400		600		400		500		600		800		1000
Egart	E _{st} [mm] =		1	00			250		167		250		200		167		125		100
Ecart	E _{min} [mm] =										100								

	Rd /pcs]					Épai	sseur de	l'isolati	on ISO 80	(ISO 60,	100 et 120	voir le f	ormulaire	de comi	mande)	_			
Ds	н			_					Quantité	plaque	s de pous	sée [pc	s]			_			
[mm]	[mm]		1		2		3		4		5		6		7		8		9
[111111]	[IIIIII]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k
140	80	22	100	43	150	65	250	86	300	108	400	129	450	151	550	172	600	194	700
160	100	27	150	54	300	81	450	108	600	135	750	162	900	189	1100	216	1250	243	1400
180	120	33	300	65	550	98	800	130	1100	163	1350	195	1600	228	1900	260	2150	293	2400
200	140	38	450	76	850	114	1250	152	1700	190	2100	228	2550	266	2950	304	3350	342	3800
220	160	44	750	87	1450	131	2200	174	2900	218	3650	261	4400	305	5100	348	5800	392	6550
240	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
260	200	55	1350	109	2650	164	4000	218	5300	273	6600	327	7900	382	9200	436	10550	491	11850
280	220	60	1700	120	3350	180	5050	240	6750	300	8450	360	10100	420	11800	480	13500	540	15150
300	240	65	2100	130	4200	195	6300	260	8450	325	10550	390	12650	455	14750	520	16850	585	18950

^{*} En raison de la présentation décomposée des rigidités en rotation k_1 et k_2 et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

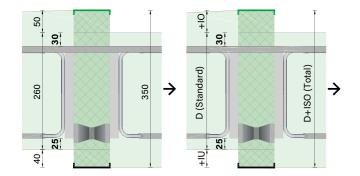
- La rigidité rotationnelle de l'élément défini est déterminée comme suit: k = k₁ + k₂ avec le formulaire de commande ebea KP, la rigidité rotationnelle des éléments définis peut être déterminée et affichée automatiquement. Les valeurs de capacité de charge sont calculées pour une résistance minimale du béton de C25/30. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et 25 mm en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-300 - Spécifications

Spécifications

La définition des éléments KP-300 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard


Type-	0	ion (2)	Qté barres (3)	Elém. de pousée		(4) ım]	+ Dou (iblage 5)	l	ISO	L (6)	KP-700	KP- KP-1	
élément (1)	Sous- type	Réalisation	n × Ø [pcs] ×	nS [pcs]	Stand	./Total	+IO [mm]	+IU [mm]	Art	Epais- seur [mm]	[mm]	S11 (7) [mm]	H [mm]	DH [mm
KP-	300		4×14	-2	220				X	PS80	1000			

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 64. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée	D (4) [mm]	+ Dou	i blage 5)	ı	so
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]
	260 <mark>/350</mark>	50	40		

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre des barres de traction <math>\times 100 mm$ **Longueur maximale** $L_{max} = 1'200 mm$ ISO

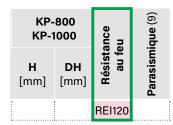
Epaisseur
[mm]

1200

Les éléments plus longs doivent être composés de deux ou plusieurs éléments. Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (-M_{Rd}) et rigidité rotationnelle des éléments de traction et de compression (k₁)» voir page 65.

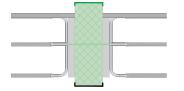
Nombre des éléments de poussée

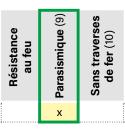
Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).


Qté barres (3)	Elém. de	D (4) [mm]
n pcs] × Ø [mm]	poussée nS [pcs]	Stand./Total
4×14	-3	220

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-300 - Spécifications

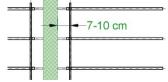
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



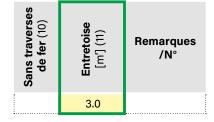
Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.



Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]			SW	sans plaq	ues de sil	icate		
Ds [mm]	2×10-1	2×14-1	4×10-1	6×10-2	5×14-2	6×14-3	8×14-4	10 × 14-5
140	0.6418	1.0591	0.2465	0.3669	0.5325	0.6515	0.8553	1.0591
160	0.6039	0.9691	0.2282	0.3410	0.4859	0.5975	0.7833	0.9691
180	0.5651	0.8802	0.2101	0.3152	0.4402	0.5441	0.7122	0.8802
200	0.5425	0.8261	0.1991	0.3000	0.4121	0.5177	0.6689	0.8261
220	0.5784	0.8362	0.2010	0.3086	0.4109	0.5117	0.6770	0.8362
240	0.5647	0.8011	0.1938	0.2987	0.3925	0.4966	0.6488	0.8011
260	0.5531	0.7713	0.1877	0.2903	0.3769	0.4788	0.6250	0.7713
280	0.5432	0.7458	0.1825	0.2831	0.3635	0.4635	0.6046	0.7458
300	0.5346	0.7236	0.1780	0.2769	0.3519	0.4502	0.5869	0.7236
Longueur standard L _{st} [mm] =	20	00		•	1000	•	•	

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-300 - Description du produit

Description du produit

Les éléments d'angle **ebea KPE-300** sont utilisés pour des éléments de construction en saillie et servent à absorber des moments négatifs et (- M) ainsi que l'effort tranchant positif et négatif (± V). La grande couvertures de béton du **ebea KPE-300** permet de l'utiliser comme élément d'angle en combinaison avec un **élément ebea KP-300**. Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Cet élément doté de barres galvanisées à chaud représente une alternative économique à l'élément pour dalles en porte-à-faux **ebea KPE-100**. Les deux éléments (**ebea KP-300** et **ebea KPE-300**) doivent être commandés et installés séparément.

Application KPE-300

Paramètre du corps isolant et des composants en acier

- L Longueur élément
- D Hauteur d'élément
- ISO Epaisseur isolante
- S Longueur barres
- Diamètre barres
- H Hauteur plaques de poussée
- E Ecart barres

Système statique

Réalisations et matériaux utilisés

Matéria	ux utilisés	Version standard	VE1	VE2			
Isol	ation	XPS, laine de roche (SW), PUR					
Barres d	e traction	B500B galv.	non dis	ponible			
Plaques o	le poussée	1.4362	non dis	ponible			
Tampon	D160 à 190	1.4404	non dis	ponible			
de pression	à partir de D200	UHFB	non dis	·····			

Standard

Version galvanisée à chaud

Dimensions du corps thermo-isolant (ISO)

			Standard		ı	Disponibl	e
Corps	isolant	Min.	Max	Niveau	Min.	Max.	Niveau
Hauteur	D [mm]	160	300	20	150	440	5
Longueur	L [mm]	200	1000	-	200	1200	50
Epaisseur	ISO [mm]		80, 120		60), 80, 100, 1	120

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur	barres S [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
Standard	ISO 80-120	-	860	-	1090	-

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-300 – Tableaux de dimensionnement

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

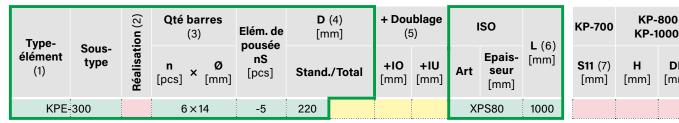
Mo	oments d	le cal	lcul (- N	/I _{Rd}) ε	t rigid	ité ro	tationr	nelle	des élé	émen	ts de t	ractio	n et de	com	pressio	n (k ₁)
M _{Rd} [kNm/pcs]	k [kNm/rad]		Barres de traction n [pcs] × Ø [mm]														
Hauteur st	andard ISO	2	×10	2	×14	4×10 6×10		4	×14	6	×14	8	×14	10×14			
Ds [mm]	M_{Rd}	k	M_{Rd}	k	M _{Rd}	k	M _{Rd}	k	M _{Rd}	k	M_{Rd}	k	M _{Rd}	k	M _{Rd}	k
90	160	5	600	10	1000	10	1250	15	1850	19	2050	29	3050	39	4050	48	5050
ISO oir and	180	6	1200	12	1900	13	2350	19	3550	25	3800	37	5700	49	7600	62	9500
olation ISO 8 tt 120 voir commande)	200	8	1750	15	2800	16	3450	23	5200	30	5650	45	8450	60	11300	75	14100
sola et 1; eco	220	9	2400	18	3900	18	4800	27	7150	35	7850	53	11750	71	15650	88	19600
l e l'is , 100 ire d	240	11	3150	20	5200	21	6300	32	9450	41	10400	61	15600	81	20800	102	25950
isseur de l'isolation IS (ISO 60, 100 et 120 voir formulaire de comman	260	12	4050	23	6650	24	8050	36	12100	46	13300	69	19950	92	26600	115	33250
.≌ - ⊊.	280	13	5000	26	8300	27	10000	40	15050	51	16600	77	24850	103	33150	129	41450
Épa le	300	15	6100	28	10100	29	12200	44	18300	57	20200	85	30300	114	40400	142	50550
	plaques de [pcs] à choix		1		1		1-3	1	I-5		1-3	1	-5	1	-7	1	1-9
Language ICO	L _{st} [mm] =		20	00						1000							
Longueur ISO	L _{min} [mm] =		20	00			400		600	400 600		600	8	300	1	000	
Facut	E _{st} [mm] =		10	00	•		250		167		250		167	,	125		100
Ecart	E _{min} [mm] =									100							

		Ré	sistan	ce à l'	effort	tranc	hant ($\pm V_{Rd}$	et rig	idité	en rot	ation	des él	éme	nts de	pous	sée (k	2)	
V [kN/						É	paisseur d	e l'isola	tion ISO 80) (ISO 60,	100 et 120	voir le foi	rmulaire de	comma	ande)				
Ds	н			•		•		•	Quantit	é plaque	s de pous	sée [pcs]		***************************************		•••••		••••••	
[mm]	[mm]		1		2		3		4		5		6		7		8		9
[]	[]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V _{Rd}	k
160	80	22	50	43	150	65	250	86	300	108	350	129	450	151	550	172	600	194	650
180	100	27	150	54	300	81	450	108	650	135	800	162	950	189	1100	216	1250	243	1400
200	120	33	250	65	550	98	800	130	1050	163	1350	195	1600	228	1900	260	2150	293	2400
220	140	38	450	76	850	114	1250	152	1700	190	2100	228	2500	266	2950	304	3400	342	3800
240	160	44	700	87	1500	131	2200	174	2950	218	3650	261	4350	305	5100	348	5850	392	6550
260	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
280	200	55	1300	109	2600	164	3950	218	5250	273	6550	327	7900	382	9200	436	10550	491	11850
300	220	60	1650	120	3400	180	5100	240	6750	300	8450	360	10150	420	11800	480	13500	540	15200

^{*} En raison de la présentation décomposée des rigidités en rotation k₁ et k₂ et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

- La rigidité rotationnelle de l'élément défini est déterminée comme suit: k = k₁ + k₂ avec le **formulaire de commande ebea KP**, la rigidité rotationnelle des éléments définis peut être déterminée et affichée automatiquement. Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 45 mm en haut et 30 mm en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-300 - Spécifications

Spécifications

La définition des éléments KPE-300 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 68. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée	D (4) [mm]	+ Dou	i blage 5)	ISO			
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]		
	260 <mark>/350</mark>	50	40				

DH

[mm]

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale L_{min} = Nombre des barres de traction × 100 mm Longueur maximale $L_{max} = 1'200 \text{ mm}$

1200 Les éléments plus longs doivent être composés de deux ou plusieurs éléments. Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (- M_{Bd}) et rigidité rotationnelle des éléments de traction et de compression (k₁)» voir page 69.

Nombre des éléments de poussée

Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).

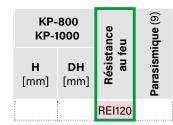
Qté barres (3)	Elém. de poussée	D (4) [mm]
n pcs] × Ø [mm]	nS [pcs]	Stand./Total
6×14	-3	

ISO

Art

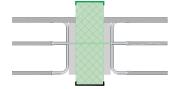
Epais-

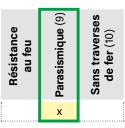
seur [mm] L(6)


[mm]

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-300 - Spécifications

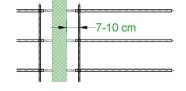
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Longueur	barres S [mm]		Diamèt	re barres	Ø [mm]	
•	verses de fer	8	10 Standard	12	14 Standard	16
Standard	ISO 80-120	-	1180	-	1510	-

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

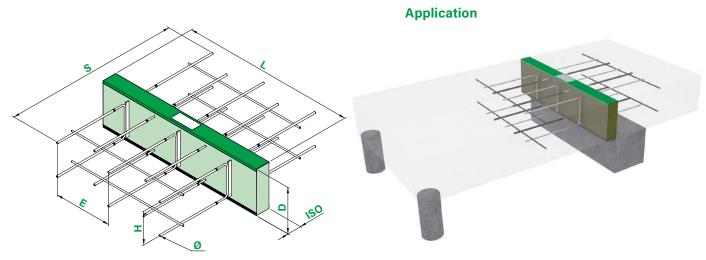
Sans traverses	Entretoise	Remarques
de fer (10)	[m'] (11)	/N°
	3.0	

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]			SW	sans plac	ques de si	licate		
Ds [mm]	2×10-1	2×14-1	4×10-1	6×10-2	5×14-2	6×14-3	8×14-4	10 × 14-5
160	0.5665	0.9317	0.2207	0.3260	0.4709	0.5750	0.7534	0.9317
180	0.5318	0.8470	0.2035	0.3018	0.4269	0.5242	0.6856	0.8470
200	0.5126	0.7962	0.1931	0.2876	0.4001	0.4937	0.6449	0.7962
220	0.4968	0.7546	0.1846	0.2760	0.3783	0.4688	0.6117	0.7546
240	0.5335	0.7699	0.1875	0.2863	0.3800	0.4779	0.6239	0.7699
260	0.5243	0.7425	0.1820	0.2788	0.3654	0.4615	0.6020	0.7425
280	0.5165	0.7190	0.1772	0.2724	0.3528	0.4474	0.5832	0.7190
300	0.5096	0.6987	0.1730	0.2669	0.3419	0.4352	0.5670	0.6987
Longueur standard L _{st}	20	00			10	000		

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-500 - Description du produit

Description du produit

Les éléments ebea KP-500 sont des éléments d'effort tranchant, utilisés pour des composants de construction étayés à l'extérieur et servent à absorber l'effort tranchant positif et négatif (± V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en deux versions différentes. Il n'y a pas d'éléments KPE pour l'ebea KP-500.

Paramètre du corps isolant et des composants en acier

L Longueur élément

D Hauteur d'élémentISO Epaisseur isolante

S Longueur barres

Diamètre barres

H Hauteur plaques de poussée

E Écart barres

Système ± V_{Rd}

Réalisations et matériaux utilisés

Matériaux utilisés	VE1	VE2			
Isolation	XPS, laine de roche (SW), PUR				
Barres de traction	1,4000	1 4 4 0 0			
Plaques de poussée	1.4302	1.4402			

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	isolant		Standard		ı	Disponibl	е	
COIPS	isolalit	Min. Max Nive			ı Min. Max. Niv			
Hauteur	D [mm]	140	300	20	120	440	5	
Longueur	L [mm]	200	1000	-	200	1200	50	
Epaisseur	ISO [mm]	80, 120 60, 80, 100, 12				120		

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur b	arres \$ [mm]	Diamètre barres Ø [mm]
avec 2 traverse	s de fer par côté	8
VE1	ISO 60-80	960
VE2	ISO 100-120	1000

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

|nox

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-500 - Tableaux de dimensionnement

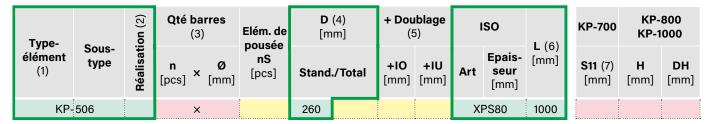
Tableaux de dimensionnement

La transmission de l'effort tranchant est assurée par des plaques de poussée. Des barres additionnelles servent d'armature constructive. Le nombre des composants est défini **selon le sous-type**. Pour les **éléments ebea KP-500**, il est **possible de choisir librement** le nombre des composants. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

		Ré	sist	ance	àľ	effor	t tra	ncha	ant (± V _R	d) et	forc	es n	orma	ales	(±N	Rd)					
V _{Rd} [k	N/pcs]		Epai	isseur i	solant	e ISO 60	0, 80			Ер	aisseur	isolan	te ISO	100			Ep	aisseur	isolan	te ISO	120	
Hauteur			Types KP																			
standard ISO Ds [mm]	H [mm]	KP-501	KP-502	KP-503	KP-504	KP-505	KP-506	KP-507	KP-501	KP-502	KP-503	KP-504	KP-505	KP-506	KP-507	KP-501	KP-502	KP-503	KP-504	KP-505	KP-506	KP-507
140	80	22	43	22	43	65	86	108	19	38	19	38	57	76	95	16	32	16	32	48	64	80
160	100	27	54	27	54	81	108	135	24	48	24	48	72	96	120	22	44	22	44	66	88	110
180	120	33	65	33	65	98	130	163	30	60	30	60	90	120	150	27	54	27	54	81	108	135
200	140	38	76	38	76	114	152	190	34	68	34	68	102	136	170	31	62	31	62	93	124	155
220	160	44	87	44	87	131	174	218	39	78	39	78	117	156	195	35	70	35	70	105	140	175
240	180	49	98	49	98	147	196	245	44	88	44	88	132	176	220	40	80	40	80	120	160	200
260	200	55	109	55	109	164	218	273	50	100	50	100	150	200	250	45	90	45	90	135	180	225
280	220	60	120	60	120	180	240	300	54	108	54	108	162	216	270	48	96	48	96	144	192	240
300	240	65	130	65	130	195	260	325	59	118	59	118	177	236	295	53	106	53	106	159	212	265
N _{Rd} [k	N/pcs]	43	43	43	43	87	130	173	40	40	40	40	80	120	159	36	36	36	36	73	109	145
Quantité plaq u [p	i es de poussée cs]	1	2	1	2	3	4	5	1	2	1	2	3	4	5	1	2	1	2	3	4	5
Languaur ICO	L _{st} [mm] =	200	300			1000			200	300			1000			200	300			1000		
Longueur ISO	L _{min} [mm] =	200	300	200	300	400	500	600	200	300	200	300	400	500	600	200	300	200	300	400	500	600
Ecart	E _{st} [mm] =	50 (150)	200	450 (550)	500	333	250	200	50 (150)	200	450 (550)	500	333	250	200	50 (150)	200	450 (550)	500	333	250	200
	E_{min} [mm] =											100										

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).

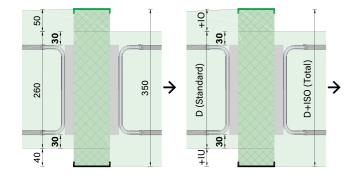


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-500 - Spécifications

Spécifications

La définition des éléments KP-500 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard

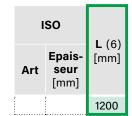


Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 72. Pas de valeur +IU négative réalisable du côté inférieur (tampon).



Elém. de pousée		(4) nm]	+ Dou	_	ı	so
nS [pcs]	Stand.	/Total	+IO [mm]	+IU [mm]	Art	Epais- seur [mm]
	260	′350	50	40		

Longueurs spéciales

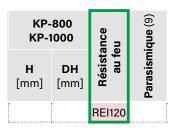
Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = (Nombre des éléments de poussée + 1) <math>\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

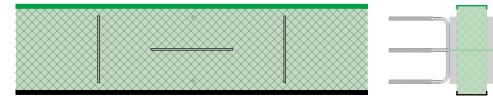
Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

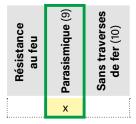
Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «**Résistance à l'effort tranchant** ($\pm V_{Rd}$) et forces normales ($\pm N_{Rd}$)» voir page 73.

Nombre des éléments de poussée


Le nombre des plaques de poussée est variable pour cet élément.

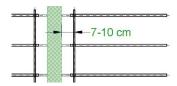
Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-500 - Spécifications

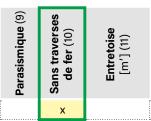

Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.

Effets sismiques

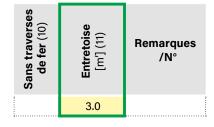
Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec quatre plaques de poussée verticales au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition. Les types ebea KP-501/-502/-507 ne sont pas disponibles en version «parasismique».





Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.


	arres S [mm]	Diamètre barres Ø [mm]		
sans trave	rses de fer	8		
VE1	ISO 60-80	960		
VE2	ISO 100-120	1000		

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

λ_{eq} [W/(mK)]			SW	sans plaq	ues de sil	licate		
Ds [mm]	-1	-2	-1	-2	-3	-4	-5	-6
140	0.2647	0.3038	0.0849	0.1191	0.1641	0.2090	0.2539	0.2989
160	0.2740	0.3207	0.0868	0.1242	0.1710	0.2178	0.2646	0.3114
180	0.2812	0.3338	0.0883	0.1281	0.1764	0.2246	0.2729	0.3211
200	0.2870	0.3443	0.0894	0.1313	0.1807	0.2301	0.2795	0.3289
220	0.3462	0.4255	0.1012	0.1556	0.2169	0.2781	0.3393	0.4006
240	0.3518	0.4349	0.1024	0.1585	0.2208	0.2832	0.3456	0.4079
260	0.3566	0.4429	0.1033	0.1609	0.2242	0.2875	0.3508	0.4142
280	0.3607	0.4497	0.1041	0.1629	0.2271	0.2912	0.3553	0.4195
300	0.3643	0.4556	0.1049	0.1647	0.2296	0.2944	0.3593	0.4241
Longueur standard L _{st} [mm] =	200	300			1000			

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Inox

ebea KP-600

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-600 - Description du produit

Description du produit

Les éléments **ebea KP-600** sont des éléments d'effort tranchant utilisés pour des éléments de construction étayés à l'extérieur et servent à absorber l'effort tranchant positif (+V). Les étriers minces améliorent sensiblement l'isolation acoustique. Le produit est disponible en deux versions différentes. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-600**.

Application S Côté balcon Côté dalle

Paramètre du corps isolant et des composants en acier

L Longueur élément
D Hauteur d'élément
ISO Epaisseur isolante

S Longueur étriers de poussée
H Hauteur étriers de poussée
E Ecart étriers de poussée

Système + V_{Rd} statique

Réalisations et matériaux utilisés

Matériaux utilisés	VE1	VE2			
Isolation	XPS, Panneaux isolants en laine de roche (SW), P				
Etriers de poussée	1.4362	1.4462			

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	isolant		Standard	ı	Disponible		е	
Corps	isolalit	Min.	Max	Niveau	Min.	Max. Nive		
Hauteur	D [mm]	180	220	_	180	440	5	
Longueur	L [mm]	200	1000	-	200	1200	50	
Epaisseur	ISO [mm]	80				60, 80		

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Etrioro	do pouccáo S	Etriers de poussée H [mm]				
Etileis	de poussée \$ [mm]	Ø 8 étrier Ø 10 étrier 120 160				
VE1 VE2	ISO 60-80	480	720			

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-600 – Tableaux de dimensionnement

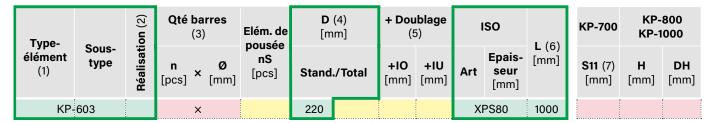
Tableaux de dimensionnement

La transmission de l'effort tranchant est assurée par des étriers de poussée. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

		F	Résistance à	i l'effort tran	chant (+ V _{Rd})			
	V _{Rd} [kN/pcs]		Types KP Epaisseur isolante ISO 60 et ISO 80						
Ds [mm]	Dt [mm]	H [mm]	KP-601	KP-602	KP-603	KP-604	KP-605	KP-606	
180	180-210	120	38	38	57	76	95	114	
220	220-300+	160	61	61	92	122	153	183	
Quantit	té étriers de pous	sée [pcs]	2	2	3	4	5	6	
Long		L _{st} [mm] =	200			1000			
Long	ueur ISO	L _{min} [mm] =	200	200	300	400	500	600	
	oort	E _{st} [mm] =	100	400	333	250	200	167	
	cart	E _{min} [mm] =			1	00			

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).
- Selon le flux des forces, les **éléments ebea KP-600** doivent être disposés avec les barres des étriers de poussée placées en bas et vers le balcon.

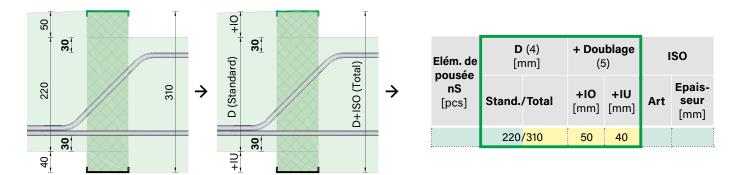


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-600 - Spécifications

Spécifications

La définition des éléments KP-600 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées à celles des étriers d'effort tranchant. Pour les hauteurs standards, on a pris en compte un recouvrement de béton de 30 mm en haut et en bas. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 76.

Longueurs spéciales

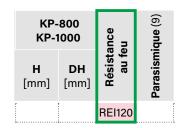
Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre$ des éléments de poussée \times 100 mm **Longueur maximale** $L_{max} = 1'200$ mm

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau **«Résistance à l'effort tranchant (+ V**_{Rd})» voir page 77.

Nombre des éléments de poussée

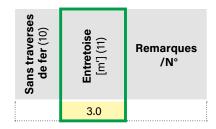

Le nombre des étriers de poussée est variable pour cet élément.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-600 - Spécifications

Résistance au feu

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.

Effets sismiques


Dans cet élément, on ne peut pas intégrer des plaques de poussée horizontales Si une absorption plus élevée de forces horizontales est nécessaire, on pourra recourir à des éléments parasismiques intégrés **ebea KP-Type G**. Pour de plus amples informations sur **ebea KP-Type G**, voir description du produit à partir de page 108. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.

Sans traverses de fer

La version sans traverses de fer n'est pas disponible pour les éléments ebea KP-600.

Entretoises

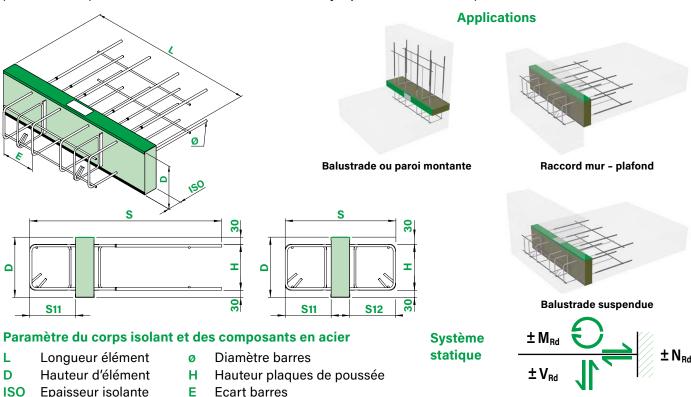
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente λ eq

λ _{eq} [W/(mK)]		SW sans plaques de silicate										
Ds [mm]	-1	-2	-1	-2	-3	-4	-5	-6				
180	0.0818	0.1236	0.0484	0.0567	0.0651	0.0734	0.0818	0.0901				
220	0.0934	0.1468	0.0507	0.0614	0.0720	0.0827	0.0934	0.1041				
Longueur standard L _{st} [mm] =	20	00			1000		•					

λ_{eq} [W/(mK)]	SW avec plaques de silicate							
Ds [mm]	-1	-2	-1	-2	-3	-4	-5	-6
180	0.0955	0.1373	0.0620	0.0704	0.0787	0.0871	0.0955	0.1038
220	0.1037	0.1571	0.0610	0.0716	0.0823	0.0930	0.1037	0.1144
Longueur standard L _{st} [mm] =	200				1000			

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.


Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-700 - Description du produit

Description du produit

Les éléments **ebea KP-700** sont des éléments de console et parapets. Ils sont utilisés pour des éléments de construction en porte-à-faux et servent à absorber des moments négatifs et positifs $(\pm M)$, l'effort tranchant positif et négatif $(\pm V)$ et les efforts normaux $(\pm N)$. Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en deux versions différentes. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-700**.

Réalisations et matériaux utilisés

Longueur barres

Matériaux utilisés	VE1	VE2				
Isolation	XPS, laine de roche (SW), PUR, Foamglas					
Barres de traction et barres de compression	1 4262	1 4460				
Plaques de poussée	1.4302	1,4402				

- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	Corps isolant		Standard	I	Disponible						
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau				
Hauteur	D [mm]	140	140 300		120	440	5				
Longueur	L [mm]	10	00	-	200	1200	50				
Epaisseur	ISO [mm]		80, 120		60	, 80, 100, ⁻	120				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

-	barres S [mm]		Diamètre barres Ø = 10 mm									
	verses de fer r côté	\$11 = 120 mm	S11 = 160 mm	S11 = 200 mm	S11 Sonder							
	ISO 60	610	650	690								
VE1	ISO 80	630	670	710	S = S11 +							
VE2	ISO 100	650	690	730	ISO + 430 mm							
	ISO 120	670	710	750	43011111							

La longueur de l'armature détermine la taille de l'élément en diagonal à l'axe de joint. Les principales mesures figurent, selon la version, dans le Tableau à côté de «Dimensions des barres d'armature». Les éléments sont aussi disponibles avec des mesures S11 individuelles. Pour ce faire il faut tenir compte des valeurs limites suivantes:

 $S11_{min}$ (ISO 60/100) = 110 mm

 $S11_{min}$ (ISO 80/120) = 100 mm

 $S11_{max}$ (ISO 60/80/100/120) = 430 mm

S

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-700 – Tableaux de dimensionnement

Tableaux de dimensionnement

La transmission du moment et de l'effort tranchant est assurée par des composants séparés. Le nombre des éléments portants peut être **choisi librement**, afin de permettre une adaptation optimale des éléments aux conditions individuelles. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

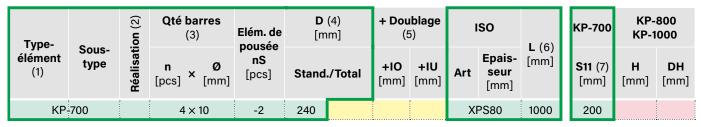
					riç	gid													rce e tra										ı (l	k₁)							
$N_{Rd}[kN/p]$	pcs] ($N_d = 0$) cs] ($M_d = 0$) m/rad]																		S11 [mm	1]																
				•			12	20		•		•		L					•	30	_1:2_	/- 10 -				L					2	00					
	tandard ISO [mm]		2	•	Τ	3		Т	4	•	Ι	6		Ι	2		anu	ie co 3	mposa	nts	piles 4	ו טו ש)	IIIII <i>)</i>	6		Ι	2		Γ	3	•	Γ	4		Τ	6	
	-	MRd	NRd	k	MRd		k	MRd	NRd	k	MRd	·····	k	MRd	·····	k	MRd	NRd	k	MRd	NRd	k	MRd	N _{Rd}	k	MRd		k	MRd	NRd	k	MRd	NRd	k	M _{Rd}		k
0	140	3	72	250	4	108	350	5	143	450	8	215	700	3	86	250	5	129	350	6	172	450	9	258	700	4	100	250	5	151	350	7	201	450	11	301	700
98 Ulaire	160	4	79	400	5	118	600	7	158	800	11	237	1150	4	93	400	6	140	600	8	187	800	13	280	1150	5	108	400	7	161	600	10	215	800	15	323	1150
n ISO form	180	5	86	600	7	129	900	9	172	1150	14	258	1750	6	100	600	8	151	900	11	201	1150	17	301	1750	6	115	600	9	172	900	13	230	1150	19	344	1750
latio iir le inde)	200	6	93	800	9	140	1200	12	187	1650	18	280	2450	7	108	800	10	161	1200	14	215	1650	21	323	2450	8	122	800	12	183	1200	16	244	1650	24	366	2450
l'iso 20 vo mma	220	8	100	1100	11	151	1650	15	201	2150	23	301	3250	9	115	1100	13	172	1650	17	230	2150	26	344	3250	10	129	1100	15	194	1650	19	258	2150	29	387	3250
Épaisseur de l'isolation ISO 80 (ISO 60, 100 et 120 voir le formulaire de commande)	240	9	108	1400	14	161	2100	18	215	2800	27	323	4200	10	122	1400	16	183	2100	21	244	2800	31	366	4200	12	136	1400	17	204	2100	23	273	2800	35	409	4200
18 seu 0, 100	260	11	115	1750	16	172	2600	22	230	3500	33	344	5250	12	129	1750	18	194	2600	25	258	3500	37	387	5250	14	143	1750	20	215	2600	27	287	3500	41	430	5250
Épai SO 6	280	13	122	2150	19	183	3200	26	244	4250	38	366	6400	14	136	2150	21	204	3200	29	273	4250	43	409	6400	16	149	2150	23	223	3200	31	297	4250	47	446	6400
_	300	15	129	2550	22	194	3850	30	258	5100	45	387	7650	17	143	2550	25	215	3850	33	287	5100	50	430	7650	17	149	2550	26	223	3850	34	297	5100	51	446	7650
	plaques de pcs] à choix		1			1-	2		1-	3		1-	5		1			1-	2		1-	3		1-	5		1			1-	2		1-:	3		1-	5
Longueur	L _{st} [mm] =		00	^		0.0		000	40	•		00	,		00	^		20		00	40	^		00	•		00	•		20		00	40	•		00	0
ISO	L_{min} [mm] = E_{st} [mm] =		20 40	•		30	•	-	40 20	•		60 150			20 40	•		30	•		40 20	•		150			20 40			30	•		40 20		-	600 150	•
Ecart	Emin [mm] =		40	U	1	JU		100						00	20	,	1	150	,																		

	Résist	ance	à l'ef	fort t	ranch	ant ((±V _{Rd})	et ri	gidité	en r	otatio	n des	s élém	ents	de po	ouss	ée (k ₂)		
	/ _{Rd} /pcs]					Épa	isseur de	l'isolati	on ISO 80	(ISO 60	, 100 et 120	voir le f	ormulaire	de comi	mande)				
Ds	Н		-						Quantité	plaque	s de pous	sée [pc	s]	•					
[mm]	[mm]		1		2		3		4		5		6		7		8		9
	[111111]	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V _{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k	V_{Rd}	k
140	80	22	100	43	150	65	250	86	300	108	400	129	450	151	550	172	600	194	700
160	100	27	150	54	300	81	450	108	600	135	750	162	900	189	1100	216	1250	243	1400
180	120	33	300	65	550	98	800	130	1100	163	1350	195	1600	228	1900	260	2150	293	2400
200	140	38	450	76	850	114	1250	152	1700	190	2100	228	2550	266	2950	304	3350	342	3800
220	160	44	750	87	1450	131	2200	174	2900	218	3650	261	4400	305	5100	348	5800	392	6550
240	180	49	1000	98	2000	147	3000	196	4000	245	5000	294	6000	343	7000	392	8000	441	9000
260	200	55	1350	109	2650	164	4000	218	5300	273	6600	327	7900	382	9200	436	10550	491	11850
280	220	60	1700	120	3350	180	5050	240	6750	300	8450	360	10100	420	11800	480	13500	540	15150
300	240	65	2100	130	4200	195	6300	260	8450	325	10550	390	12650	455	14750	520	16850	585	18950

^{*} En raison de la présentation décomposée des rigidités en rotation k_1 et k_2 et de l'arrondi respectif des résultats, des écarts faibles des rigidités totales jusqu'à 50 kNm/rad peuvent être présents pour certaines combinaisons de composants par rapport au formulaire de commande.

Indications

- Les valeurs de capacité de charge sont calculées pour une résistance minimale du béton de C25/30. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU (voir section Doublage du corps thermoisolant). Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site (voir page 122, «Armatures réalisées sur site»).

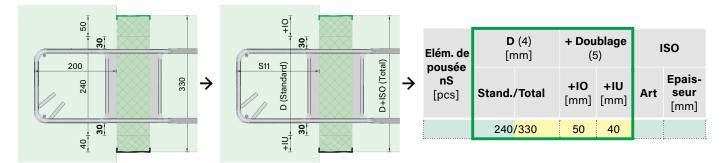


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-700 - Spécifications

Spécifications

La définition des éléments KP-700 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard


Sur demande la partie ouverte de l'étrier peut également être fabriquée en étrier à profondeur variable (indiquer la mesure sous S12). Les mêmes valeurs limites sont valables pour les mesures S11 et S12. Les étriers seront fermés au deux bouts dès qu'une valeur S12 est indiquée dans le formulaire de commande.

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 80.

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre$ des barres de traction \times 100 mm **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (\pm M_{Rd}), forces normales (\pm N_{Rd}) et rigidité rotationnelle des éléments de traction et de compression (k_1)» voir page 81.

Nombre des éléments de poussée

Le nombre des plaques de poussée est sélectionnable individuellement. A noter qu'il faut toujours insérer moins d'éléments de poussée que de barres de traction (nS < n).

Qté barres (3)	Elém. de poussée	D (4) [mm]
n Ø [pcs] × [mm]	nS [pcs]	Stand./Total
4×10	-3	220

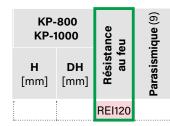
ISO

Art

Epais-

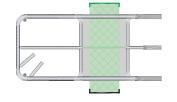
seur [mm] L(6)

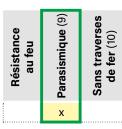
[mm]


1200

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-700 - Spécifications

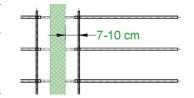
Résistance au feu

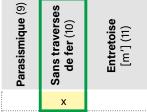

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, FG, PUR: REI 60.



Effets sismiques

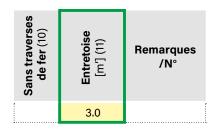
Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.





Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP. Sur le côté fermé de l'étrier les fers transversaux seront pour des raisons de capacité de portance laissés en l'état. Des éléments sans fers transversaux sur le côté fermé de l'étrier (S11) peuvent être commandés comme élément spéciaux. Dans ce cas les valeurs de capacité de portance doivent être diminuées en conséquence.


Longueu	r barres \$ [mm]		Diamètre barres ∅ = 10 mm										
sans traverses de fer		S11 = 120 mm	S11 = 160 mm	S11 = 200 mm	S11 Sonder								
	ISO 60	690	730	770									
VE1	ISO 80	710	750	790	S = S11 +								
VE2	ISO 100	730	770	810	ISO + 510 mm								
	ISO 120	750	790	830	310111111								

Entretoises

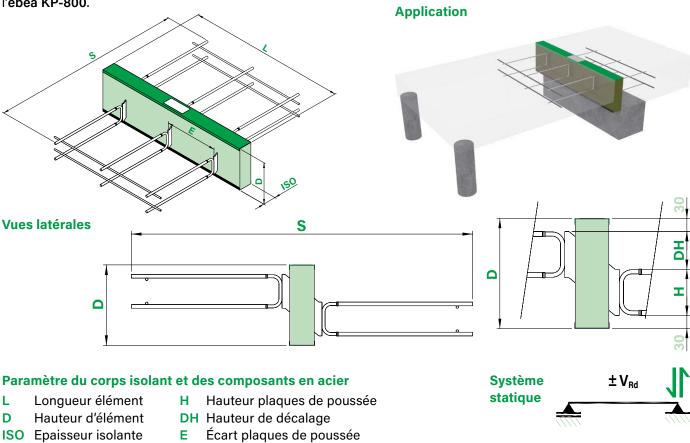
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

			•	•				
$\lambda_{eq}[W/(mK)]$			SW	sans plaq	ues de sil	licate		
Ds [mm]	2×10-1	3×10-1	2×10-1	3×10-1	4×10-2	6×10-3	8×10-4	10 × 10-5
140	0.3788	0.3218	0.1078	0.1245	0.1755	0.2433	0.3111	0.3788
160	0.3739	0.3115	0.1068	0.1215	0.1735	0.2403	0.3071	0.3739
180	0.3700	0.3035	0.1060	0.1191	0.1720	0.2380	0.3040	0.3700
200	0.3669	0.2971	0.1054	0.1171	0.1708	0.2362	0.3015	0.3669
220	0.4188	0.3281	0.1158	0.1264	0.1915	0.2673	0.3431	0.4188
240	0.4184	0.3249	0.1157	0.1255	0.1914	0.2670	0.3427	0.4184
260	0.4181	0.3220	0.1156	0.1247	0.1912	0.2668	0.3425	0.4181
280	0.4178	0.3198	0.1156	0.1239	0.1911	0.2667	0.3422	0.4178
300	0.4175	0.3178	0.1155	0.1233	0.1910	0.2665	0.3420	0.4175
Longueur standard L _{st} [mm] =	200	300			1000			

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-800 - Description du produit

Description du produit

Les éléments **ebea KP-800** sont des éléments d'effort tranchant utilisés pour des composants de construction décalés et servent à absorber l'effort tranchant positif et négatif (± V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en deux versions différentes. Il n'y a **pas d'éléments KPE** pour l'ebea **KP-800**.

Réalisations et matériaux utilisés

Longueur plaques de poussée

Matériaux utilisés	VE1	VE2
Isolation	XPS, laine de ro	che (SW), PUR
Plaques de poussée	1.4362	1.4462

- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	Corps isolant		Standard	i	Disponible					
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau			
Hauteur	D [mm]	230	330	var.	210	470	5			
Longueur	L [mm]	200	1000	-	200	1200	50			
Epaisseur	ISO [mm]	80				60, 80				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

avec 1 traverses	s de fer par côté	Longueur plaques de poussée S [mm] 8
VE1 VE2	ISO 60-80	930

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

S

Іпох

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-800 - Tableaux de dimensionnement

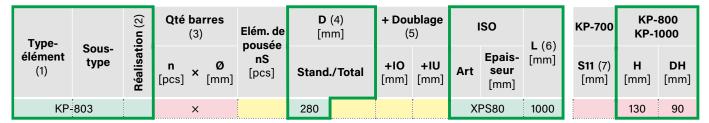
Tableaux de dimensionnement

La transmission de l'effort tranchant est assurée par des plaques de poussée. Le nombre des composants est défini **selon** le sous-type. Pour les éléments ebea KP-800, il n'est pas possible de choisir librement le nombre des composants. Les valeurs indiquées sont basées sur un écart minimum de 167 mm entre les plaques de poussée. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

		Ré	ésistance à	l'effort tran	chant (± V _{Rd})									
	V _{Rd} [kN/pcs]		Épaisseur de l'isolation ISO 80 (ISO 60 voir le formulaire de commande)											
Plaque poussée H [mm]	Décalage DH [mm]	Hauteur standard ISO Ds [mm]	KP-801	KP-802	KP-803	KP-804	KP-805	KP-806						
	60	230	26	52	78	104	130	156						
110	90	260	24	48	72	96	120	144						
	120	290	22	44	66	88	110	132						
	60	250	32	64	96	128	160	192						
130	90	280	30	59	89	118	148	177						
	120	310	27	54	81	108	135	162						
	60	270	38	76	114	152	190	228						
150	90	300	36	72	108	144	180	216						
	120	330	32	64	96	128	160	192						
Quantité plaques d	e poussée [pcs]		1	2	3	4	5	6						
Longue	·* ICO	L _{st} [mm] =	200			1000	'	•						
Longuet	Longueur ISO		200	300	400	500	600	700						
F	Farad		200	500	333	250	200	167						
Ecar	Ecart	E _{min} [mm] =			1	00								

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).

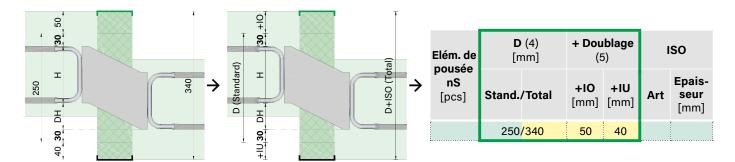


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-800 - Spécifications

Spécifications

La définition des éléments KP-800 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées à celles des plaques de poussée (H) et à la mesure de leur décalage (DH). Pour les hauteurs standards, on a pris en compte un recouvrement de béton de 30 mm en haut et en bas. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 84.

Longueurs spéciales

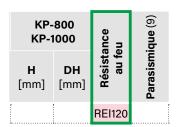
Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = (Nombre des éléments de poussée + 1) <math>\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

ISO

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

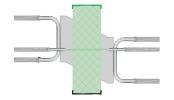
Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «**Résistance à l'effort tranchant** ($\pm V_{Rd}$)» voir page 85.

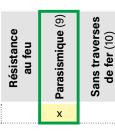

Nombre des éléments de poussée

Le nombre des plaques de poussée est variable pour cet élément.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-800 - Spécifications

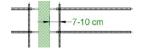
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec quatre plaques de poussée verticales au maximum. Les types ebea KP-805/-806 ne sont pas disponibles en version «parasismiques». Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

sans trave	rses de fer	Longueur plaques de poussée \$ [mm]
VE1 VE2	ISO 60-80	1280

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses de fer (10) de fer (10) Bemarques (N/ (11) (11) (12)

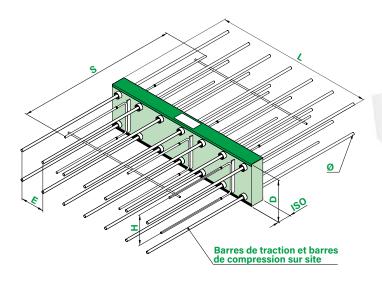
Parasismique (9)

Conductivité thermique équivalente \(\lambda \)eq

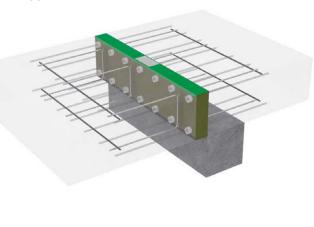
	λ _{eq} W/(mK)	1	SW sans plaques de silicate							
Ds [mm]	H [mm]	DH [mm]	-1	-2	-1	-2	-3	-4	-5	-6
230		60	0.2189	0.2785	0.0758	0.1115	0.1473	0.1831	0.2189	0.2546
260	110	90	0.1982	0.2510	0.0716	0.1033	0.1349	0.1666	0.1982	0.2299
290		120	0.1819	0.2291	0.0684	0.0967	0.1251	0.1535	0.1819	0.2102
250		60	0.2345	0.2993	0.0789	0.1178	0.1567	0.1956	0.2345	0.2734
280	130	90	0.2136	0.2715	0.0747	0.1095	0.1442	0.1789	0.2136	0.2484
310		120	0.1968	0.2491	0.0714	0.1027	0.1341	0.1655	0.1968	0.2282
270		60	0.2478	0.3170	0.0816	0.1231	0.1647	0.2062	0.2478	0.2893
300	150	90	0.2270	0.2893	0.0774	0.1148	0.1522	0.1896	0.2270	0.2644
330		120	0.2100	0.2667	0.0740	0.1080	0.1420	0.1760	0.2100	0.2440
	ongueu ard L _{st} [ı		200	300	1000					

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Description du produit


Les éléments en porte-à-faux ebea KP-900 servent à absorber des moments négatifs et positifs (- M) ainsi que l'effort tranchant positif et négatif (±V). Les tubes étoiles PVC intégrés permettent de réaliser une armature de raccord personnalisée sur site. Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en deux versions différentes.

ebea KP-900

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-900 - Description du produit

Application

Paramètre du corps isolant et des composants en acier

L Longueur élément Diamètre barres

Hauteur d'élément D ISO Epaisseur isolante

Hauteur plaques de poussée Distance PVC-Tube en étoile Е

Longueur plaques de poussée S

Système statique

Réalisations et matériaux utilisés

Matériaux utilisés	VE1	VE2		
Isolation	XPS, laine de ro	che (SW), PUR		
Plaques de poussée	1.4362	1.4462		

- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corps isolant			Standar	d	Disponible			
Corps	isolalit	Min.	Max	Niveau	Min. Max. Niveau			
Hauteur	D [mm]	160	300	20	140	440	5	
Longueur	L [mm]	1000		-	250	1200	150	
Epaisseur	ISO [mm]	80			60, 80			

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur d'élément		Hauteur d'élément de poussée H [mm]					
de poussée S [mm]		80, 140, 200	120, 180, 240				
VE1 VE2	ISO 60-80						

La longueur de l'armature détermine la taille de l'élément en diagonal à l'axe de joint. Les principales mesures figurent, selon la version, dans le Tableau à côté de «Dimensions des barres d'armature».

Attention! Les barres de traction et compression à disposer sur site, doivent correspondre aux longueurs d'ancrage conformes à la norme, en fonction de leur diamètre.

Tableaux de dimensionnement

La transmission du couple et de l'effort tranchant est assurée par des composants séparés. Le nombre des composants est défini selon le sous-type. Pour les éléments ebea KP-900, il n'est pas possible de choisir librement le nombre des composants. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

D	Moments de calcul (± M _{Rd})								
M _{Rd} [kNm/pcs]	Barres de tra	Barres de traction B500B sur site 2×7×ø [mm] ISO 80							
Hauteur standard ISO D _s [mm]	H [mm]	10	12	14	16				
160	100	19	28	38	50				
180	120	23	34	47	62				
200	140	28	41	55	74				
220	160	32	47	65	86				
240	180	36	54	74	98				
260	200	41	60	83	110				
280	220	45	66	92	121				
300	240	49	73	101	133				
Quantité plaque de poussée [pcs	1–9, selon le nombre de tubes en étoile								

	Résistance à l'effort tranchant (± V _{Rd})								
	_{Rd} pcs]	Épaisseur de l'isolation ISO 80 (ISO 60 voir le formulaire de commande)							
D s [mm]	H [mm]	KP-901	KP-902	KP-903	KP-904	KP-905			
160	100	27	54	81	108	135			
180	120	33	65	98	130	163			
200	140	38	76	114	152	190			
220	160	44	87	131	174	218			
240	180	49	98	147	196	245			
260	200	55	109	164	218	273			
280	220	60	120	180	240	300			
300	240	65	130	195	260	325			
Quantité de pous		1	2	3	4	5			

Les moments de calcul figurant dans le Tableau cidessous «Moments de calcul ($\pm M_{Rd}$)» requièrent:

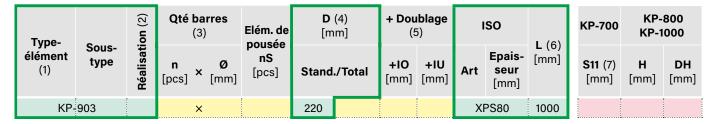
- L'intégration de 7 tubes en haut et en bas.
- Les barres d'armature disposées sur site en haut et en bas sont du même diamètre et nombre.
- Les barres d'armature sont ancrées dans le béton des éléments de construction raccordés, selon la norme.
- Qualité minimale du béton armé: B500B.
- Des barres d'armature jusqu'à 22 mm de diamètre peuvent être poussées à travers les tubes en étoile.

Indication

Les barres de traction et compression sur le chantier peuvent également être réalisées en acier inoxydables. Pour celà notre assortiment **RUWA ruwinox** de la page 34 convient parfaitement.

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).
- Dans chacun des tubes placés dans la 1ère et la 4ème couche doivent passer des barres d'armature.
- Le béton frais doit être compacté avec soin le long du joint afin de remplir complètement l'espace autour des barres.

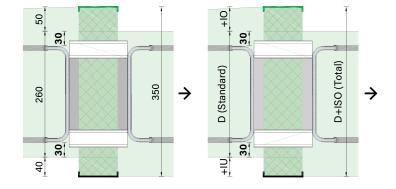


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-900 - Spécifications

Spécifications

La définition des éléments KP-900 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 88.

Elém. de pousée	D (4) [mm]		Dou (5	blage 5)	ISO		
nS [pcs]	Stand./Total	+1 [m	_	+IU [mm]	Art	Epais- seur [mm]	
	260 <mark>/350</mark>	5	0	40			

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre$ de tubes en étoile $\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

ISO

EpaisArt seur
[mm]

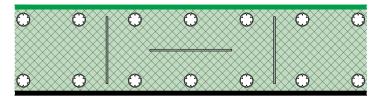
1200

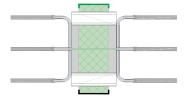
Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (± M_{Rd})» voir page 89.

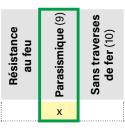
Nombre des éléments de poussée

Le nombre des composants est variable pour cet élément.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-900 - Spécifications

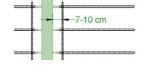

Résistance au feu

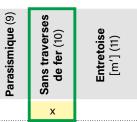

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec quatre plaques de poussée verticales au maximum. Le type ebea KP-905/-906 n'est pas disponible en version «parasismiques». Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.





Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Composants S [mm]		Plaque de poussée H [mm]				
Cullipusal	its s [iiiiii]	80, 140, 200	, 140, 200 100, 160, 220 120,			
VE1 VE2	ISO 60-80		960	•		

Entretoises

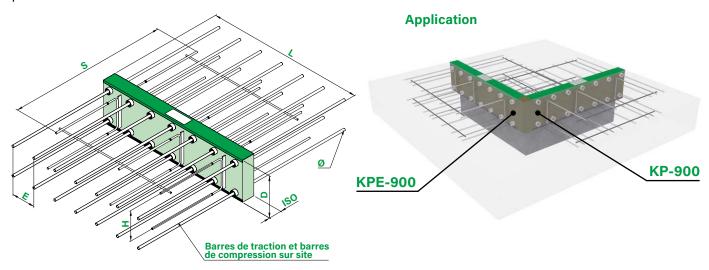
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses de fer (10)	Entretoise [m'] (11)	Remarques /N°
	3.0	

Conductivité thermique équivalente \(\lambda \)eq

λ_{eq} [W/(mK)]		SW sans plaques de silicate						
Ds [mm]	2×ø-1	3×ø-1	7×ø-1	7×ø-2	7×ø-3	7×ø-4	7×ø-5	7×ø-6
160	0.2270	0.1647	0.0774	0.1148	0.1522	0.1896	0.2270	0.2644
180	0.2395	0.1730	0.0799	0.1198	0.1597	0.1996	0.2395	0.2794
200	0.2494	0.1796	0.0819	0.1238	0.1657	0.2076	0.2494	0.2913
220	0.3120	0.2213	0.0944	0.1488	0.2032	0.2576	0.3120	0.3664
240	0.3205	0.2270	0.0961	0.1522	0.2083	0.2644	0.3205	0.3766
260	0.3277	0.2318	0.0975	0.1551	0.2126	0.2702	0.3277	0.3852
280	0.3339	0.2359	0.0988	0.1575	0.2163	0.2751	0.3339	0.3926
300	0.3392	0.2395	0.0998	0.1597	0.2195	0.2794	0.3392	0.3990
Longueur standard L _{st}	200	300	1000					

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.


Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-900 - Description du produit

Description du produit

Les ebea KPE-900 sont des éléments d'angle de dalles en porte-à-faux. Ils servent à absorber des moments négatifs et positifs (\pm M) ainsi que l'effort tranchant positif et négatif (\pm V). La grande couvertures de béton du **ebea KPE-900** permet de l'utiliser comme élément d'angle en combinaison avec un élément ebea KP-900. Les tubes étoiles PVC intégrés permettent de réaliser une armature de raccord personnalisée sur site Le système de plaques confère au raccord une meilleure stabilité. Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Les deux éléments (ebea KP-900 et ebea KPE-900) doivent être commandés et installés séparément. Le produit est disponible en deux versions différentes.

Paramètre du corps isolant et des composants en acier

L Longueur élément Ø Diamètre barres

Hauteur d'élément D

Hauteur plaques de poussée Distance PVC-Tube en étoile Е

ISO Epaisseur isolante S

Longueur plaques de poussée

Système statique

Réalisations et matériaux utilisés

Matériaux utilisés	VE1	VE2		
Isolation	XPS, laine de ro			
Plaques de poussée	1.4362	1.4462		

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corns	isolant		Standard	j	Disponible			
ourps	isolulit	Min.	Max	Niveau	Min.	Max.	Niveau	
Hauteur	D [mm]	160 300		20	140	440	5	
Longueur	L [mm]	10	00	-	250	150		
Epaisseur	ISO [mm]	80			60, 80			

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longu	ieur plaques issée \$ [mm]	Hauteur plaques de poussée H [mm]						
de pol	ussée S [mm]	80, 140, 200	100, 160, 220	120, 180, 240				
VE1 VE2	ISO 60-80		960					

La longueur de l'armature détermine la taille de l'élément en diagonal à l'axe de joint. Les principales mesures figurent, selon la version, dans le Tableau à côté de «Dimensions des barres d'armature».

Attention! Les barres de traction et compression à disposer sur site, doivent correspondre aux longueurs d'ancrage conformes à la norme, en fonction de leur diamètre.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-900 – Tableaux de dimensionnement

Tableaux de dimensionnement

La transmission du couple et de l'effort tranchant est assurée par des composants séparés. Le nombre des composants est défini selon le sous-type. Pour les éléments ebea KPE-900, il n'est pas possible de choisir librement le nombre des composants. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

Mon	Moments de calcul (± M _{Rd})								
M _{Rd} [kNm/pcs]	Barres de traction B500B sur site 2×7×ø [mm] ISO 80								
Hauteur standard ISO Ds [mm]	10	12	14	16					
160	14	20	28	36					
180	18	27	37	48					
200	23	33	46	59					
220	27	40	54	71					
240	31	46	63	83					
260	35	52	72	95					
280	40	59	81	107					
300	44	65	90	119					
Quantité plaques de poussée [pcs]	1-9, selon le nombre de tubes en étoile								

	Résistance à l'effort tranchant (± V _{Rd})							
	_{Rd} pcs]	Épaisseur de l'isolation ISO 80 (ISO 60 voir le formulaire de commande)						
Ds [mm]	H [mm]	KPE-901	KPE-902	KPE-903	KPE-904	KPE-905		
160	100	22	43	65	86	108		
180	120	27	54	81	108	135		
200	140	33	65	98	130	163		
220	160	38	76	114	152	190		
240	180	44	87	131	174	218		
260	200	49	98	147	196	245		
280	220	55	109	164	218	273		
300	240	60	120	180	240	300		
	plaques sée [pcs]	1	2	3	4	5		

Les moments de calcul figurant dans le Tableau cidessous «Moments de calcul ($\pm M_{Rd}$)» requièrent:

- L'intégration de 7 tubes en haut et en bas.
- Les barres d'armature disposées sur site en haut et en bas sont du même diamètre et nombre.
- Les barres d'armature sont ancrées dans le béton des éléments de construction raccordés, selon la norme.
- Qualité minimale du béton armé: B500B.
- Des barres d'armature jusqu'à 22 mm de diamètre peuvent être poussées à travers les tubes en étoile.

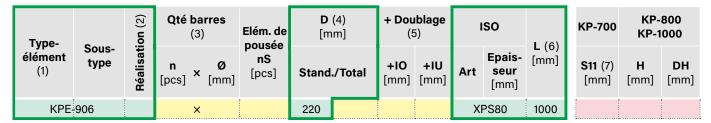
Indication

Les barres de traction et compression sur le chantier peuvent également être réalisées en acier inoxydables. Pour celà notre assortiment **RUWA ruwinox** de la page 34 convient parfaitement.

Il faut toujours vérifier si en fonction du diamètres des barres d'armature leur croisement est réalisable. (ebea KP-900 en combinaison avec ebea KPE-900).

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 40 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).
- Dans chacun des tubes placés dans la 1ère et la 4ème couche doivent passer des barres d'armature.
- Le béton frais doit être compacté avec soin le long du joint afin de remplir complètement l'espace autour des barres.

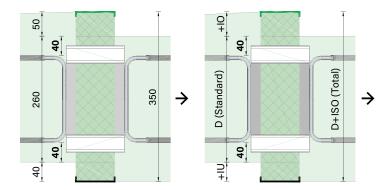


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-900 – Spécifications

Spécifications

La définition des éléments KPE-900 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées, par pas de 20 mm, aux hauteurs des plaques de poussée (H) et disponibles de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 92.

Elém. de pousée	D (4) [mm]	+1	Dou (5	blage 5)	ISO			
nS [pcs]	Stand./Total	+1 [m	_	+IU [mm]	Art	Epais- seur [mm]		
	260 <mark>/350</mark>	5	0	40				

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre de tubes en étoile <math>\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$ ISO

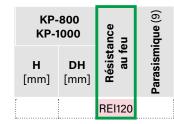
Epaisseur [mm]

1200

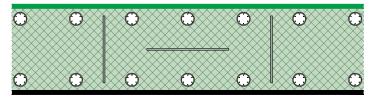
Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

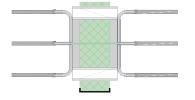
Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «**Moments de calcul (± M**_{Rd}**)»** voir page 93.

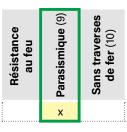
Nombre des éléments de poussée


Le nombre des composants est variable pour cet élément.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KPE-900 - Spécifications

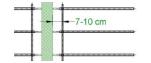

Résistance au feu

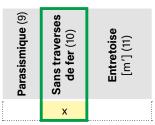

La résistance au feu est incluse dans les éléments ebea KP et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

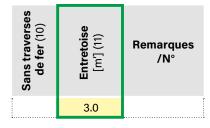
Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec **quatre** plaques de poussée **verticales** au maximum. Le type **ebea KPE-905** n'est pas disponible en version «parasismiques». Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.





Sans traverses de fer

Dans certaines situations de construction telles que p.ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.


Composs	nts \$ [mm]	Plaque de poussée H [mm]						
Composa	its 3 [iiiiii]	80, 140, 200	100, 160, 220	120, 180, 240				
VE1 VF2	ISO 60-80		960					

Entretoises

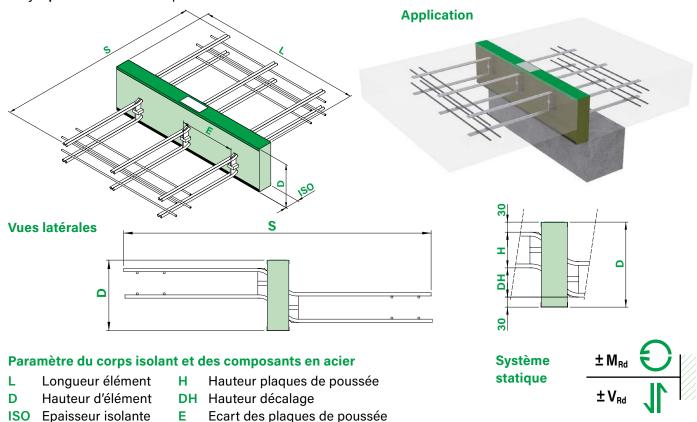
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le formulaire de commande ebea KP. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]			SW s	ans plaq	ues de sil	icate		
Ds [mm]	2×ø-1	3×ø-1	7×ø-1	7×ø-2	7×ø-3	7×ø-4	7×ø-5	7×ø-6
160	0.1896	0.1397	0.0699	0.0998	0.1298	0.1597	0.1896	0.2195
180	0.2062	0.1508	0.0732	0.1065	0.1397	0.1730	0.2062	0.2395
200	0.2195	0.1597	0.0759	0.1118	0.1477	0.1836	0.2195	0.2554
220	0.2304	0.1669	0.0781	0.1162	0.1542	0.1923	0.2304	0.2685
240	0.2893	0.2062	0.0899	0.1397	0.1896	0.2395	0.2893	0.3392
260	0.2989	0.2126	0.0918	0.1436	0.1954	0.2471	0.2989	0.3507
280	0.3071	0.2181	0.0934	0.1469	0.2003	0.2537	0.3071	0.3606
300	0.3143	0.2228	0.0949	0.1497	0.2046	0.2594	0.3143	0.3691
Longueur standard L _{st} [mm] =	200	300	1000					

Les conductivités thermiques équivalentes λeq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1000 – Description du produit

Description du produit

Les éléments **ebea KP-1000** en porte-à-faux sont utilisés pour des composants de construction décalés et servent à absorber les couples négatifs et positifs (± M) ainsi que l'effort tranchant positif et négatif (± V). Le système de plaque de poussée utilisé confère à la connexion une grande rigidité. Le produit est disponible en deux versions différentes. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-1000**.

Réalisations et matériaux utilisés

Longueur barres

Matériaux utilisés	VE1	VE1		
Isolation	XPS, laine de ro	VF2		
Barres de traction et barres de compression	1 4262	1 4 4 6 2	VLZ	(
Plaques de poussée	1,4302	1.4402		•

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	isolant		Standard	i	Disponible				
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau		
Hauteur	D [mm]	230	330	var.	210	470	5		
Longueur	L [mm]	200	1000	-	200	1200	50		
Epaisseur	ISO [mm]		80		60, 80				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

Longueur ba	arres S [mm]	Longueur plaques de poussée S [mm]
avec 2 traverses	s de fer par côté	12
VE1 VE2	ISO 60-80	1140

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

S

11,

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1000 – Tableaux de dimensionnement

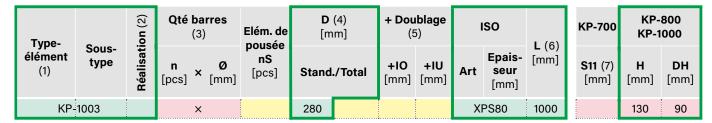
Tableaux de dimensionnement

La transmission des moments et de l'effort tranchant est assurée par des composants en acier inox combinés. Le nombre des composants est défini selon le sous-type. Pour les éléments ebea KP-1000, il n'est pas possible de choisir librement le nombre des composants. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

	Moments de calcul (\pm M $_{Rd}$), rigidités rotationnelles (k) et résistance à l'effort tranchant (\pm V $_{Rd}$)						s rotat	ioni	nelle	es (k) e	t ré	sista	ance à	l'eff	ort	tranch	ant	(±V	Rd)	
M _{Rd} [kNm/pcs]	k [kNm/rad]	V _{Rd} [kN/pcs]		Épaisseur de l'isolation ISO 80 (ISO 60 voir le formulaire de commande)																
Plaque de	Décalage	Hauteur		KP-1001			KP-1002			KP-1003			KP-1004			KP-1005			KP-1006	
poussée H [mm]	DH [mm]	standard ISO Ds	M _{Rd}	k	V _{Rd}	M _{Rd}	k	V _{Rd}	M _{Rd}	k	V_{Rd}	M _{Rd}	k	V_{Rd}	M _{Rd}	k	V _{Rd}	M _{Rd}	k	\mathbf{V}_{Rd}
	60	230	14	900	26	28	1750	52	42	2650	78	56	3550	104	70	4400	130	84	5300	156
110	90	260	12	900	24	25	1750	48	37	2650	72	50	3550	96	62	4400	120	75	5300	144
	120	290	11	900	22	22	1750	44	33	2650	66	44	3550	88	55	4400	110	66	5300	132
	60	250	16	1300	32	32	2650	64	48	3950	96	64	5300	128	80	6600	160	96	7900	192
130	90	280	14	1300	30	28	2650	59	42	3950	89	56	5300	118	70	6600	148	84	7900	177
	120	310	12	1300	27	24	2650	54	36	3950	81	48	5300	108	60	6600	135	72	7900	162
	60	270	19	1850	38	38	3700	76	57	5550	114	76	7400	152	95	9250	190	114	11100	228
150	90	300	17	1850	36	34	3700	72	51	5550	108	68	7400	144	85	9250	180	102	11100	216
	120	330	15	1850	32	30	3700	64	45	5550	96	60	7400	128	75	9250	160	90	11100	192
Quantité é	étriers de po	oussée [pcs]		1			2			3			4			5			6	
Longue	ur ICO	L_{st} [mm] =		200								1000								
Longue	ui iou	L _{min} [mm] =		200			300			400			500			600			700	
Eca	rt	E_{st} [mm] =		200			500			333			250			200			167	
EUd	11	E_{min} [mm] =								100										

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).

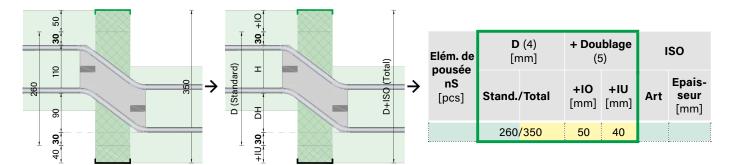


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1000 - Spécifications

Spécifications

La définition des éléments KP-1000 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont adaptées à celles des plaques de poussée (H) et à la mesure de leur décalage (DH). Pour les hauteurs standards, on a pris en compte un recouvrement de béton de 30 mm en haut et en bas. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 96.

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = (Nombre des éléments de poussée + 1) <math>\times 100 \text{ mm}$ **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

ISO

Art

Epais-

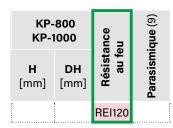
seur

L (6)

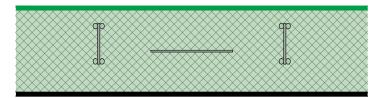
[mm]

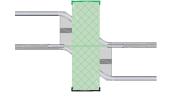
Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (\pm M_{Rd}), rigidités rotationnelles (k) et résistance à l'effort tranchant (\pm V_{Rd})» voir page 97.

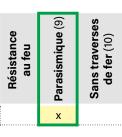
Nombre des éléments de poussée


Le nombre des composants est variable pour cet élément.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1000 – Spécifications

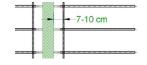

Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Effets sismiques

Si une absorption plus élevée de forces horizontales est nécessaire, il est possible d'intégrer un élément de poussée horizontal. Pour intégrer dans l'élément une plaque de poussée horizontale de 220 mm de largeur et une capacité de charge horizontale de 50 kN, veuillez cocher la colonne correspondante. Attention! Les éléments parasismiques longs de 1.0 m sont réalisables avec quatre plaques de poussée verticales au maximum. Les types ebea KP-1001/-1005/-1006 ne sont pas disponibles en version «parasismiques». Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Longueur ba sans trave	arres S [mm] rses de fer	Diamètre barres Ø [mm]
VE1 VE2	ISO 60-80	1600

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

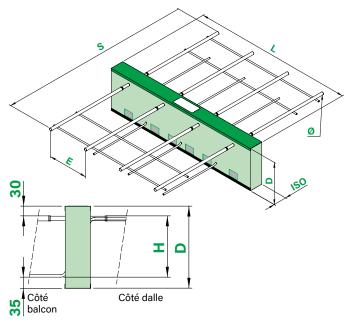
Sans traverses de fer (10) General de fer (10) Bentretoise [m] (11) Name and the control of t

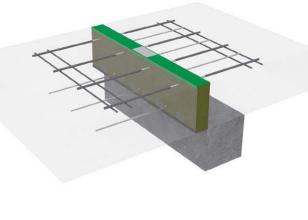
Parasismique (

Conductivité thermique équivalente \(\lambda \)eq

	λ _{eq} [W/(mK)]			SW s	ans plaq	ues de si	licate		
Ds [mm]	H [mm]	DH [mm]	-1	-2	-1	-2	-3	-4	-5	-6
230		60	0.4018	0.5224	0.1124	0.1847	0.2571	0.3294	0.4018	0.4741
260	110	90	0.3600	0.4667	0.1040	0.1680	0.2320	0.2960	0.3600	0.4240
290		120	0.3269	0.4226	0.0974	0.1548	0.2122	0.2695	0.3269	0.3843
250		60	0.4087	0.5316	0.1137	0.1875	0.2612	0.3350	0.4087	0.4825
280	130	90	0.3692	0.4790	0.1058	0.1717	0.2375	0.3034	0.3692	0.4351
310		120	0.3374	0.4365	0.0995	0.1589	0.2184	0.2779	0.3374	0.3968
270		60	0.4147	0.5395	0.1149	0.1899	0.2648	0.3397	0.4147	0.4896
300	150	90	0.3772	0.4896	0.1074	0.1749	0.2423	0.3098	0.3772	0.4446
330		120	0.3465	0.4487	0.1013	0.1626	0.2239	0.2852	0.3465	0.4078
	ongueu ard L _{st} [ı		200	300			1000			

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.


Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1100 - Description du produit

Description du produit

Les éléments ebea KP-1100 sont utilisés pour des éléments en porte-à-faux et servent à absorber des moments négatifs (-M) ainsi que l'effort tranchant positif (+V). Les étriers minces améliorent sensiblement l'isolation acoustique. Le produit est disponible en trois versions différentes. Il n'y a pas d'éléments KPE pour l'ebea KP-1100.

Application

Paramètre du corps isolant et des composants en acier

- L Longueur élément D
 - Hauteur d'élément
- ISO Epaisseur isolante Longueur barres S
- Ø Diamètre barres
- H Hauteur des étriers de poussée
- **E** Ecart barres

Système statique

Réalisations et matériaux utilisés

Matériau	ıx utilisés	RS	VE1	VE2				
Isol	ation	XPS, laine	de roche (SW), PUR				
Barres d	e traction	1.4362 + B500B	1.4362	1 4460				
Etrier de	poussée	1.4362	•	1.4462				
Tampon	D 160 à 170	1.4362	•	non disponible				
de pression	à partir de D 180	BFUP (à partir d'une épaisseur ISO de 80 mm						

- Version soudée par friction pour classe de résistance à la corrosion III (moyenne)
- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corne	isolant		Standard	I	Disponible						
Corps	isolalit	Min.	Max	Niveau	Min.	Max.	Niveau				
Hauteur	D [mm]	160	300	20	150	440	5				
Longueur	L [mm]	200	1000	-	200	1200	50				
Epaisseur	ISO [mm]		80, 120		60, 80, 100, 120						

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

•	barres S [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
RS	ISO 80-120	-	980	-	1240	-
VE1, VE2	ISO 80-120	800	1000	1140	1320	1440

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1100 – Tableaux de dimensionnement

Tableaux de dimensionnement

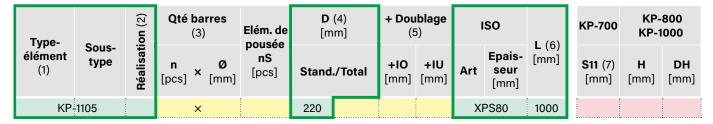
Le nombre des composants est défini en fonction du sous-type. Pour les éléments ebea KP-1100, il n'est pas possible de choisir librement le nombre des composants. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

	Moments o	de	calcul (- M _{Rd}), rigidités rotationnelles (k)													k) et résistance à l'effort tranchant (+ V _{Rd})											
M _{Rd} [kNm/pcs]	k V _{Rd} [kNm/rad] [kN/pcs]														es KP ð-nS												
	ur standard ISO		KP-1101 2×10-1	•••••		KP-1102 2×14-2			KP-1103 4 × 10-1	•		KP-1104 6×10-2	•	KP-1105 4×14-3		KP-1106 6×14-4			KP-1107 8 × 14-4			KP-1108 10 × 14-5		•			
	Ds [mm]	M _{Rd}	k	V _{Rd}	MRd	k	V_{Rd}	MRd	k	V _{Rd}	M _{Rd}	k	V _{Rd}	M _{Rd}	k	V_{Rd}	MRd	k	V _{Rd}	MRd	k	V _{Rd}	MRd	k	V _{Rd}		
nde)	160	8	850	18	15	1350	36	16	1950	18	24	2700	36	30	2950	54	45	4200	72	61	5550	72	76	7050	89		
.0 80 mma	180	10	1350	20	19	2200	40	19	3100	20	29	4350	40	37	4750	60	56	6850	80	74	9050	80	93	11450	100		
on IS	200	11	1900	22	22	3100	43	23	4300	22	34	6100	43	44	6650	65	66	9600	86	88	12750	86	111	16100	108		
solati laire (220	13	2550	23	26	4200	46	26	5750	23	40	8150	46	51	8900	68	77	12900	91	102	17100	91	128	21600	114		
de l'is ormu	240	15	3300	24	29	5400	47	30	7400	24	45	10450	47	58	11500	71	87	16650	95	116	22050	95	145	27850	119		
Épaisseur de l'isolation ISO 80 60 voir le formulaire de commande)	260	17	4100	24	33	6750	49	34	9300	24	50	13100	49	65	14450	73	98	20850	98	130	27650	98	163	34950	122		
:pais 30 voi	280	19	5050	25	36	8300	50	37	11350	25	56	16000	50	72	17700	75	108	25550	100	144	33900	100	180	42800	125		
(180 (300	20	6050	26	40	10000	51	41	13600	26	61	19200	51	79	21250	77	119	30750	102	158	40750	102	198	51500	128		
	160	8	650	15	15	1100	30	16	1550	15	24	2100	30	30	2400	45	45	3400	60	61	4500	60	76	5750	75		
ISO 120 commande)	180	10	1100	17	19	1800	33	19	2500	17	29	3500	33	37	3900	50	56	5650	67	74	7450	67	93	9450	83		
Épaisseur de l'isolation ISO 120 100 voir le formulaire de commar	200	11	1550	19	22	2550	38	23	3500	19	34	4900	38	44	5500	57	66	7950	76	88	10500	76	111	13300	96		
olatic aire d	220	13	2050	20	26	3450	40	26	4650	20	40	6500	40	51	7400	60	77	10650	80	102	14100	80	128	17800	99		
e l'iso	240	15	2650	21	29	4450	42	30	6000	21	45	8400	42	58	9550	64	87	13700	85	116	18150	85	145	23000	106		
eur d r le fo	260	17	3300	22	33	5550	44	34	7450	22	50	10500	44	65	11950	67	98	17200	89	130	22800	89	163	28800	111		
saiss 10 voi	280	19	4000	23	36	6800	46	37	9150	23	56	12800	46	72	14650	69	108	21100	92	144	27900	92	180	35300	115		
Épaisseur de l'isolation (ISO 100 voir le formulaire de	300	20	4800	24	40	8200	47	41	10950	24	61	15400	47	79	17600	71	119	25350	95	158	33550	95	198	42450	118		
	Quantité étriers de poussée 1 2								1			2			3			4			4			5			
Longueur	L _{st} [mm] =	[mm] = 200 300													1000												
ISO	L _{min} [mm] =		200			300			400			600			400			600			800			1000			
Coort	E _{st} [mm] =	100			200		250 167		167	•	250		167				125			100							
Ecart	E _{min} [mm] =													10	00												

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et 35 mm en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, **«Armatures réalisées sur site»**).
- Selon le flux des forces, les **éléments ebea KP-1100** doivent être disposés avec les barres des étriers de poussée placées en bas et vers le balcon.

101

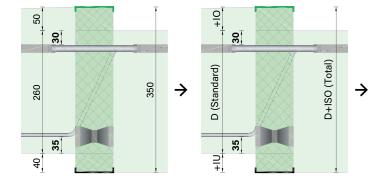


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1100 - Spécifications

Spécifications

La définition des éléments KP-1100 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont disponibles, par pas de 20 mm, de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 100. Pas de valeur +IU négative réalisable du côté inférieur (tampon).

Elém. de pousée		(4) nm]	+ Dou (5	_	ISO					
nS [pcs]	Stand./	'Total	+IO [mm]	+IU [mm]	Art	Epais- seur [mm]				
	260/	'350	50	40						

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale $L_{min} = Nombre$ des barres de traction \times 100 mm **Longueur maximale** $L_{max} = 1'200 \text{ mm}$

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

ISO

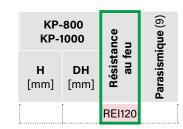
Epaisseur
[mm]

1200

Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (- M_{Rd}), rigidités rotationnelles (k) et résistance à l'effort tranchant (+ V_{Rd})» voir page 101.

Nombre des éléments de poussée

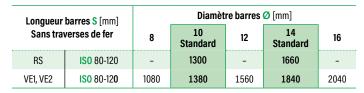
Le nombre des composants n'est pas variable pour cet élément.

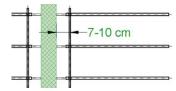

Pour de plus amples informations sur les réalisations spéciales avec capacités de charge plus élevées, vous pouvez contacter notre assistance technique.

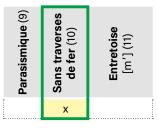
Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1100 - Spécifications

Résistance au feu

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.




Effets sismigues


Dans cet élément, on **ne** peut **pas** intégrer des plaques de poussée horizontales. Si une absorption plus élevée de forces horizontales est nécessaire, on pourra recourir à des éléments parasismiques intégrés **ebea KP-Type G**. Pour de plus amples informations sur **ebea KP-Type G**, voir la notice description du produit voir page 108. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.

Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses	Entretoise	Remarques
de fer (10)	[m'] (11)	/N°
	3.0	

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]			SW	sans plaq	ues de sil	licate		
Ds [mm]	2×10-1	2×14-2	4×10-1	6×10-2	4×14-3	6×14-4	8×14-4	10 × 14-5
160	0.2309	0.2926	0.1493	0.1687	0.2245	0.2768	0.3431	0.4330
180	0.1901	0.2384	0.1215	0.1387	0.1805	0.2230	0.2742	0.3424
200	0.1751	0.2186	0.1133	0.1288	0.1664	0.2047	0.2508	0.3121
220	0.1628	0.2024	0.1067	0.1208	0.1549	0.1898	0.2316	0.2874
240	0.1526	0.1888	0.1011	0.1140	0.1454	0.1773	0.2157	0.2668
260	0.1439	0.1774	0.0964	0.1083	0.1373	0.1667	0.2021	0.2493
280	0.1365	0.1676	0.0924	0.1034	0.1303	0.1577	0.1906	0.2344
300	0.1301	0.1591	0.0889	0.0992	0.1243	0.1498	0.1805	0.2214
Longueur standard L _{st}	200	300			1000			

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Description du produit

Les éléments en porte-à-faux ebea KP-1200 sont utilisés pour des dalles continues et servent à absorber les couples négatifs et positifs (- M) ainsi que l'effort tranchant positif et négatif (\pm V). Les étriers minces améliorent sensiblement l'isolation acoustique. Le produit est disponible en trois versions différentes. Il n'y a pas d'éléments KPE pour l'ebea KP-1200.

ebea KP-1200

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1200 - Description du produit

Paramètre du corps isolant et des composants en acier

Longueur élément L

Hauteur d'élément D

ISO Epaisseur isolante

S

Diamètre barres

H Hauteur des étriers de poussée

E Ecart barres

Système statique

Réalisations et matériaux utilisés

Longueur barres

Matériaux utilisés	RS	VE1	VE2	
Isolation	XPS, laine de ro	oche (SW)	, PUR	
Barres de traction et barres de compression	1.4362 + B500B	1.4362	1 4460	
Etrier de poussée	1.4362		1.4402	

- RS Version soudée par friction pour classe de résistance à la corrosion III (moyenne)
- VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)
- VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corns	isolant		Standard		Disponible						
oorps	isolulit	Min.	Max	Niveau	Min.	Max.	Niveau				
Hauteur	D [mm]	160	300	20	140	440	5				
Longueur	L [mm]	200	1000	-	200	1200	50				
Epaisseur	ISO [mm]		80, 120		60	, 80, 100, ⁻	120				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

•	barres \$ [mm]		Diamèt	re barres	Ø [mm]	
	verses de fer r côté	8	10 Standard	12	14 Standard	16
RS	ISO 80-120	-	980	-	1240	-
VE1, VE2	ISO 80-120	800	1000	1140	1320	1480

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

1

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1200 – Tableaux de dimensionnement

lnox

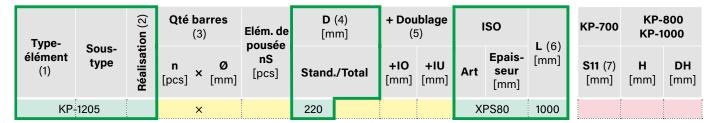
Tableaux de dimensionnement

Le nombre des composants est défini selon le sous-type. Pour les éléments ebea KP-1200, il n'est pas possible de choisir librement le nombre des composants. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

	Moments de calcul (\pm M $_{Rd}$), rigidités rotationnelles (k) et résistance à l'effort tranchant (\pm V $_{Rd}$)																								
M _{Rd} [kNm/pcs]	k V _{Rd} [kNm/rad] [kN/pcs]														es KP ð-nS										
Haute	ur standard ISO Ds [mm]		KP-1201 2×10-1	•		KP-1202 2×14-2			KP-1203 4 × 10-1			KP-1204 6×10-2		KP-1205 4×14-3		•	KP-1206 6×14-4			KP-1207 8 × 14-4			KP-1208 10 × 14-5		•
	 -	MRd	k	V _{Rd}	MRd	k	VRd	MRd	k	V_{Rd}	MRd	k	V _{Rd}	MRd	k	V _{Rd}	M _{Rd}	k	V _{Rd}	M _{Rd}	k	V _{Rd}	M _{Rd}	k	V _{Rd}
o ande	160	5	400	18	10	550	36	11	800	18	16	1150	36	22	1100	54	34	1650	72	47	2200	72	59	2750	89
SO 80 ommal	180	6	600	20	13	850	40	14	1150	20	20	1750	40	27	1650	60	42	2500	80	59	3300	80	74	4150	100
ion I	200	7	800	22	15	1150	43	17	1650	22	24	2450	43	33	2350	65	51	3500	86	71	4700	86	89	5850	108
solat laire	220	9	1100	23	18	1550	46	20	2150	23	28	3250	46	39	3150	68	60	4700	91	83	6300	91	104	7850	114
Épaisseur de l'isolation ISO 80 (ISO 60 voir le formulaire de commande)	240	10	1400	24	21	2050	47	23	2800	24	33	4200	47	45	4050	71	69	6100	95	95	8150	95	119	10150	119
seur ir le f	260	11	1750	24	24	2550	49	25	3500	24	37	5250	49	51	5100	73	78	7650	98	108	10200	98	135	12750	122
:pais 30 vo	280	13	2150	25	27	3150	50	28	4250	25	41	6400	50	57	6250	75	87	9400	100	120	12500	100	150	15650	125
0SI)	300	14	2550	26	30	3750	51	31	5100	26	46	7650	51	64	7550	77	97	11300	102	133	15050	102	166	18850	128
de)	160	4	350	15	9	500	30	10	700	15	13	1050	30	19	1000	45	30	1450	60	43	1950	60	54	2450	75
) 120 nman	180	5	500	17	11	750	33	12	1000	17	17	1550	33	24	1500	50	38	2250	67	53	3000	67	67	3700	83
on ISC e con	200	6	700	19	13	1050	38	14	1450	19	20	2150	38	30	2100	57	46	3150	76	64	4200	76	81	5250	96
Épaisseur de l'isolation ISO 120 100 voir le formulaire de commar	220	7	950	20	16	1400	40	17	1900	20	24	2850	40	35	2800	60	53	4250	80	75	5650	80	94	7050	99
e l'ise ormula	240	8	1200	21	18	1850	42	19	2450	21	27	3650	42	40	3650	64	62	5500	85	86	7300	85	108	9150	106
eur d r le fc	260	9	1500	22	21	2300	44	22	3050	22	31	4550	44	45	4600	67	70	6900	89	98	9150	89	122	11450	111
aiss 00 voi	280	10	1850	23	24	2800	46	24	3700	23	35	5600	46	51	5600	69	78	8450	92	109	11250	92	136	14050	115
Épaisseur de l'isolation ISO 120 (ISO 100 voir le formulaire de commande)	300	12	2250	24	27	3400	47	27	4450	24	38	6700	47	57	6750	71	87	10150	95	120	13550	95	150	16900	118
	étriers de poussée		1+1			2+2			1+1			2+2			3+3			4+4			4+4			5+5	
	[pcs]		171			2+2			171			2+2			3+3			4+4			4+4			0+0	
Longueur	L _{st} [mm] =		200			300											1000								
ISO	L _{min} [mm] =		200			300			400			600			400			600			800	•		1000	
Ecart	E _{st} [mm] =		100			200			250			167			250			167			125			100	
Louit	E _{min} [mm] =	: 100																							

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas. Un recouvrement plus épais est possible en indiquant les paramètres +IO et/ou +IU. Les valeurs de capacité de charge figurent, dans ce cas, dans la ligne de la hauteur d'élément standard à modifier.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, «Armatures réalisées sur site»).

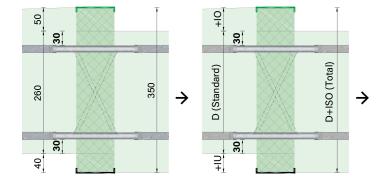


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1200 - Spécifications

Spécifications

La définition des éléments KP-1200 se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Les hauteurs standard (D) sont disponibles, par pas de 20 mm, de 160 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «Dimensions du corps thermo-isolant» voir page 104.

Elém. de pousée	D (4) [mm]	+ Dou	_	ISO		
nS [pcs]	Stand./Total	+10 [mm]	+IU [mm]	Art	Epais- seur [mm]	
	260 <mark>/350</mark>	50	40			

Longueurs spéciales

Sous réserve de la prise en compte des indications suivante on peut choisir librement la longueur de l'élément isolant (L):

Longueur minimale L_{min} = Nombre des barres de traction × 100 mm

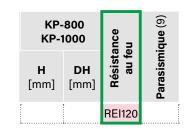
Longueur maximale $L_{max} = 1'200 \, \text{mm}$

Les éléments plus longs doivent être composés de deux ou plusieurs éléments.

Les longueurs ISO, sélectionnables en fonction de la composition, figurent dans le Tableau «Moments de calcul (\pm M_{Rd}), rigidités rotationnelles (k) et résistance à l'effort tranchant (\pm V_{Rd})» voir page 105.

Nombre des éléments de poussée

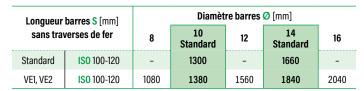
Le nombre des composants n'est pas variable pour cet élément.

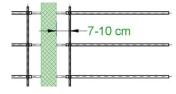

Pour de plus amples informations sur les réalisations spéciales avec capacités de charge plus élevées, vous pouvez contacter notre assistance technique.

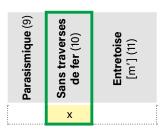
Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-1200 - Spécifications

Résistance au feu

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.

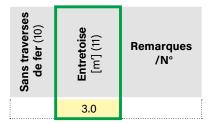



Effets sismiques


Dans cet élément, on **ne** peut **pas** intégrer des plaques de poussée horizontales. Si une absorption plus élevée de forces horizontales est nécessaire, on pourra recourir à des éléments parasismiques intégrés **ebea KP-Type G**. Pour de plus amples informations sur **ebea KP-Type G**, voir la notice description du produit voir page 108. Pour les solutions individuelles (par exemple, de grandes contraintes horizontales), notre équipe technique est à votre disposition.

Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.



Entretoises

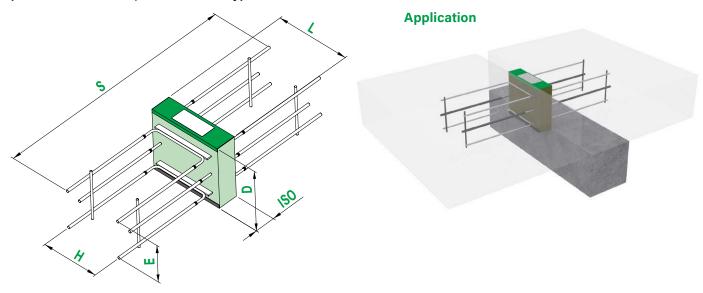
Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \) eq

λ _{eq} [W/(mK)]	SW sans plaques de silicate									
Ds [mm]	2×10-1	2×14-2	4×10-1	6×10-2	4×14-3	6×14-4	8×14-4	10 × 14-5		
160	0.2104	0.2632	0.1034	0.1375	0.1692	0.2315	0.2891	0.3514		
180	0.1914	0.2384	0.0964	0.1267	0.1549	0.2102	0.2614	0.3168		
200	0.1763	0.2186	0.0908	0.1180	0.1434	0.1932	0.2393	0.2891		
220	0.1639	0.2024	0.0861	0.1109	0.1340	0.1793	0.2212	0.2664		
240	0.1536	0.1888	0.0823	0.1050	0.1262	0.1677	0.2061	0.2476		
260	0.1448	0.1774	0.0790	0.1000	0.1195	0.1579	0.1933	0.2316		
280	0.1374	0.1676	0.0763	0.0957	0.1139	0.1494	0.1823	0.2179		
300	0.1309	0.1591	0.0738	0.0920	0.1089	0.1421	0.1728	0.2061		
Longueur standard L _{st} [mm] =	200	300	1000							

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type G - Description du produit

Description du produit

Les éléments parasismiques **ebea KP-Type G** transmettent l'effort tranchant horizontal parallèlement au joint dans les deux directions (± H) et sont utilisés pour répondre à des exigences parasismiques élevées. En règle générale, ils sont disposés entre des **éléments standards ebea KP**. Le produit est disponible en deux versions différentes. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-Type G**.

Paramètre du corps isolant et des composants en acier

L Longueur élément
 D Hauteur d'élément
 S Longueur barres
 H Hauteur plaques de poussée

ISO Epaisseur isolante E Ecart plaques de poussée

Système statique

Réalisations et matériaux utilisés

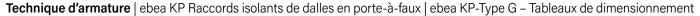
Matériaux utilisés	VE1	VE2			
Isolation	XPS, laine de roche (SW), PUR				
Barres de traction	1 4262	1 4462			
Plaques de poussée	1.4362	1.4402			

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

VE2 Version entièrement en acier inox pour classe de résistance à la corrosion IV (haute)

Dimensions du corps thermo-isolant (ISO)

Corps isolant			Standard	j	Disponible			
		Min.	Max	Niveau	Min.	Max.	Niveau	
Hauteur	D [mm]	140	300	20	120	440	5	
Longueur	L [mm]	300		-	300		50	
Epaisseur	ISO [mm]		80		60, 80			


Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques.

Dimensions des barres d'armature

n] Diamètre barres Ø [mm]	barres S [mm]	Longueur
	verses de fer	avec 2 tra
8	avec 2 traverses de fer par côté	
0.40	100 00 00	
840	ISO 60-80	VE1, VE2

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature».

Inox

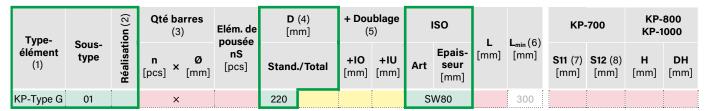
Tableaux de dimensionnement

La transmission de l'effort tranchant est assurée par des plaques de poussée. Des barres additionnelles servent d'armature constructive. Le nombre des composants est défini selon sous-type. Pour les éléments KP-Type G, il n'est pas possible de choisir librement le nombre des composants. Les tableaux de dimensionnement suivants ne représentent que quelques configurations possibles. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

Ré		à l'effort tranchan ces normales (+ N				
He	-	Types KP				
[kN/¡ Hauteur sta	•		rmulaire de commande)			
Ds [r		KP-Type G-01	KP-Type G-02			
14	0					
16	0		-			
18	0					
20	0					
22	0	50				
24	0		100			
26	0		100			
28	0					
30	0					
N _{Rd} [kN	1 1	4	3			
Quantité plaque [pcs] H =	es de poussée 240 mm	1	2			
Longueur ISO	L _{st} [mm] =	300				
Longueur 150	L _{min} [mm] =	30	00			
Ecart	E_{st} [mm] =	-	var.			
Luait	E_{min} [mm] =	-	100			

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton d'au moins 45 mm en haut et en bas. Pour les éléments Type G-01, le recouvrement de béton augmente, en fonction de la hauteur d'élément, jusqu'à 95 mm.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, «**Armatures réalisées sur site**»).
- Les éléments ne disposent d'aucune capacité de charge en direction verticale et servent donc uniquement d'éléments supplémentaires.

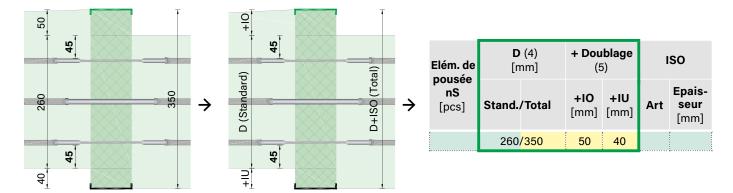


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type G - Spécifications

Spécifications

La définition des éléments KP-Type G se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard



Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

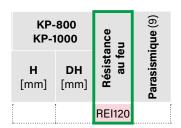
Les hauteurs standard (D) sont disponibles, par pas de 20 mm, de 140 mm à 300 mm. Le système permet une spécification individuelle de la hauteur de l'élément. A l'aide des indications +IO et +IU, on définit la taille des doublages en haut et/ou en bas. De cette façon, la hauteur de l'élément et le recouvrement de béton sont adaptés à la situation de montage effective.

L'exemple ci-après illustre une hauteur spécifiée individuellement à l'aide des valeurs +IO et +IU. La dimension D (total) est calculée automatiquement sur la base des paramètres (D Standard, +IO, +IU). Les valeurs D à choix figurent dans le Tableau «**Dimensions du corps thermo-isolant**» voir page 108.

Longueurs spéciales

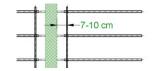
La longueur de cet élément **n'est pas** variable. Davantage de longueurs sont disponibles parmi nos éléments standards avec plaques de poussée horizontales intégrées. Pour de plus amples informations à ce sujet, voir le chapitre «Effets sismiques» dans les notices techniques.

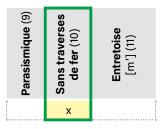
Nombre des éléments de poussée


Le nombre des plaques de poussée **n'est pas** variable pour cet élément. Pour une transmission des forces plus élevée, plusieurs éléments sont disposés l'un après l'autre.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type G - Spécifications

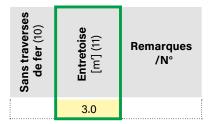
Résistance au feu


La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS, PUR: REI 60.



Sans traverses de fer

Dans certaines situations de construction telles que p. ex. les armatures de poinçonnement en bord de dalle, il vaut mieux éviter l'emploi de barres transversales pour faciliter le montage. En raison du fait que les barres transversales soudées réduisent la longueur d'ancrage, dans ces variantes les barres de traction et les branches d'étrier seront (sont) plus longues. Les longueurs des barres (S) sans traverses de fer figurent dans le Tableau ci-dessous. Les fers transversaux dans la zone d'ancrage seront remplacés par des barres de montages qui seront soudées transversalement aux fers de traction à une distance de 7-10 cm de l'isolation sur chaque nappes de l'élément KP.


Longueur barres S [mm]		Diamètre barres Ø [mm]			
		8			
VE1, VE2	ISO 60-80	970			

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Conductivité thermique équivalente \(\lambda \)eq

λ _{eq} [W/(mK)]	SW sans plaq	ues de silicate	XPS avec plaques de silicate			
Ds [mm]	KP-Type G-01	KP-Type G-02	KP-Type G-01	KP-Type G-02		
140	0.5032	-	0.5224	-		
160	0.4453	-	0.4615	-		
180	0.4003	-	0.4141	-		
200	0.3643	0.6635	0.3762	0.6755		
220	0.3348	0.6068	0.3452	0.6172		
240	0.3102	0.5596	0.3193	0.5687		
260	0.2894	0.5196	0.2974	0.5277		
280	0.2716	0.4853	0.2787	0.4925		
300	0.2562	0.4556	0.2624	0.4620		
Longueur standard L _{st} [mm] =	3	00	30	00		

Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

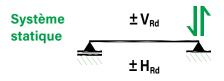
Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type H - Description du produit

Description du produit

Les raccords de dalles en porte-à-faux **ebea KP-Type H** sont utilisés partout où, en raison des étapes de travail ou des exigences de coffrage, les connexions doivent être réalisées en deux parties. L'**ebea KP-Type H** est conçu en deux parties avec une armature à visser et à un goujon pour l'effort tranchant. Il sert à absorber les forces transversales dans les deux directions (± V). Selon le choix du goujon, une force horizontale (± H) peut également être absorbée. Le produit est disponible dans un seul type de design. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-Type H**.

Dimensions 820 660 160 Plaque de fixation ISO Barre avec coupleur **D/2** Ω Gaine Barre de connection OD-51: 207 QD-43:≥200 mm OD-51: ≥ 220 mm Plaque ▶ ■ Mur


Paramètre du corps isolant et des composants en acier

L Longueur élément

S Longueur barresØ Diamètre barres

D Hauteur d'élémentISO Epaisseur isolante

S11 Gaine profonde pour goujon

Réalisations et matériaux utilisés

Matériaux utilisés	VE1
Isolation	XPS, laine de roche (SW)
Barres de traction	1.4362
Goujons pour efforts tranchants	1.4462 / UHFB
Barre de montage	Acier inoxydable

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

Dimensions du corps thermo-isolant (ISO)

Corns	icolant	Standard					
Corps	Corps isolant	Min.	Max	Niveau			
Hauteur	D [mm]	200	350	10/20/30			
Longueur	L [mm]	350		-			
Epaisseur	ISO [mm]		60, 80				

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques. Le goujon de type QD-51(q) n'est disponible qu'à partir d'une hauteur d'élément de 260 mm.

Dimensions des barres d'armature

Longue	ır harres \$ [mm]	Diamètre bar	res Ø = 12 mm
Longueur barres S [mm] sans traverses de fer		S11 = 187 mm (QD-43[q])	S11 = 207 mm (QD-51[q])
VE1	ISO 60-80	847	867

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature». La dimension S11 ne peut pas être choisie librement pour l'ebea KP-Type H. Une épaisseur de paroi minimale de 200 mm est requise pour l'utilisation du goujon QD-43(q); 220 mm sont requis pour le goujon QD-51(q).

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type H - Tableaux de dimensionnement

Tableaux de dimensionnement

La reprise de l'effort tranchant et autres forces normales se fait par des éléments séparés. Pour les éléments KP-Type H, il n'est pas possible de choisir librement le nombre des composants. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

	Résista	nce à l'et	fort tra	nchant	$(\pm V_{Rd}/$	± H _{Rd}) et	t forces	norma	les (± N	Rd)		
$\begin{aligned} & \boldsymbol{V}_{Rd}\left[kN/pcs\right]\left(\boldsymbol{H}_{d}=0\right) \\ & \boldsymbol{H}_{Rd}\left[kN/pcs\right]\left(\boldsymbol{V}_{d}=0\right) \\ & \boldsymbol{N}_{Rd}\left[kN/pcs\right]\left(\boldsymbol{M}_{d}=0\right) \end{aligned}$					Épa	isolation ISO 60						
Hauteur standard ISO		QD-43			QD-43q			QD-51			QD-51q	
Ds [mm]	V_{Rd}	H _{Rd}	N _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}	V_{Rd}	H _{Rd}	N _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}
200	60	45	94	60	-	94						
220	67	50	94	67	-	94		_			_	
240	74	56	94	74	-	94						
250	77	58	94	77	-	94						
260	77	58	94	77	-	94	82	62	94	82	-	94
280	77	58	94	77	-	94	89	67	94	89	-	94
300	74	56	94	74	-	94	88	66	94	88	-	94
320	74	56	94	74	-	94	95	71	94	95	-	94
350	74	56	94	74	-	94	103	77	94	103	-	94
H_{Rd} [kN/pcs] (V _d = 0) N_{Rd} [kN/pcs] (M _d = 0) Hauteur standard ISO		QD-43		T	Ера QD-43q	aisseur de l'i	isolation ISC	0 80 QD-51	•		QD-51q	
Ds [mm]	V _{Rd}	H _{Rd}	N _{Rd}	V _{Rd}	H _{Rd}	N_{Rd}	V_{Rd}	H _{Rd}	N _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}
200	60	45	91	60	-	91						
220	67	50	91	67	-	91						
240	74	56	91	74	-	91		_		-		
250	77	58	91	77	-	91						
260	77	58	91	77	-	91	82	62	91	82	-	91
280	77	58	91	77	-	91	89	67	91	89	-	91
300	74	56	91	74	-	91	88	66	91	88	-	91
320	74	56	91	74	-	91	95	71	91	95	-	91
350	74	56	91	74	-	91	103	77	91	103	-	91
ntité de barres de traction	[pcs] 2	2 × Ø 12 sur un niveau 2 × Ø 12 sur un nivea		veau	2 × ø 12 sur un niveau			2×0	o 12 sur un n	veau		
Quantité de goujon [pcs]		1			1			1			1	
	a _{min}		3	50					3	50		
Entre-axes	Gillin				350							
Entre-axes Longueur ISO	L _{St}					35	50					

Distances minimales d'installation

L'entraxe minimal entre deux éléments est de 350 m pour le goujon de type QD-43(q). Pour le type de goujon QD-51(q), l'entraxe minimal est de 350 mm. L'entraxe minimal par rapport aux bords de dalle est de $a_{min}/2$. L'entraxe minimal par rapport aux bords des dalles est de $a_{min}/2$. Pour des entraxes plus importants, les résistances ultimes peuvent être demandées à l'équipe technique **RUWA** ou se référer aux pages 194 et 197.

Indications

- Les valeurs de capacité de charge sont calculées pour une **résistance minimale du béton de C25/30**. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, «Armatures réalisées sur site»).

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type H - Spécifications

Spécifications

La définition des éléments KP-Type H se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Un doublage du corps d'isolation thermique n'est pas possible avec l'ebea KP de Type H.

Longueurs spéciales

La longueur de cet élément n'est pas variable.

Nombre des éléments de poussée

Le nombre de goujons **n'est pas** variable pour cet élément. Pour une transmission de force plus élevée, plusieurs éléments sont posés les uns à côté des autres (respecter la distance de pose minimale).

Résistance au feu

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS: REI 60.

Effets sismiques

La reprise de forces horizontales supplémentaires est possible si les types de goujons QD-43 ou QD-51 sont choisis. Les forces horizontales ne peuvent pas être reprises si des goujons mobiles transversalement sont utilisés.

Sans traverses de fer

Les ebea KP de Type H sont livrés en standard sans fers transversaux. Il n'y a pas d'autres options disponibles.

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses	Entretoise	Remarques
de fer (10)	[m'] (11)	/N°
	3.0	

KP-800

KP-1000

[mm]

DH

[mm]

Parasismique (

Résistance

an fen

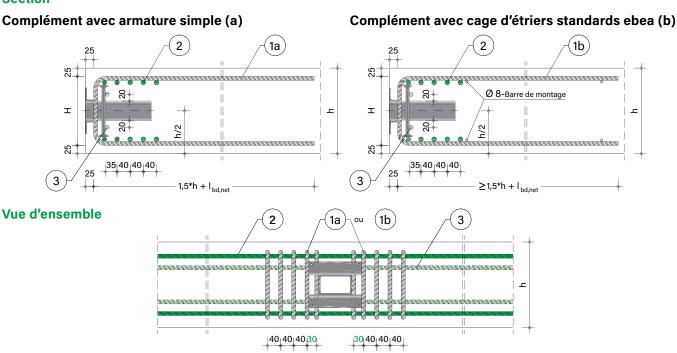
REI120

Conductivité thermique équivalente \(\lambda \)eq

$\lambda_{eq}[W/(mK)]$	SW sans plaques de silicate							
Ds [mm]	QD-43	QD-43q	QD-51	QD-51q				
200	0.2196	0.2196	-	-				
220	0.2033	0.2033	-	-				
240	0.1897	0.1897	-	-				
250	0.1837	0.1837	-	-				
260	0.1782	0.1782	0.2260	0.2260				
280	0.1683	0.1683	0.2127	0.2127				
300	0.1598	0.1598	0.2012	0.2012				
320	0.1523	0.1523	0.1911	0.1911				
350	0.1426	0.1426	0.1782	0.1782				
ongueur standard L _{st}		. 3	50	•				

Les conductivités thermiques équivalentes λeq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

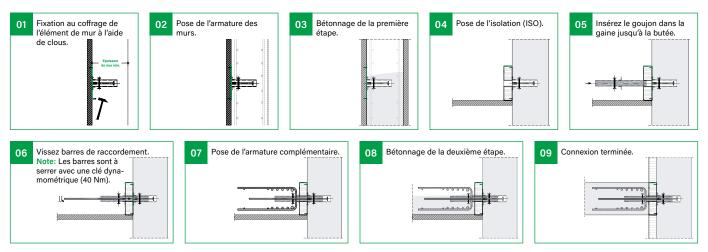


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type H - Spécifications

Armature complémentaire

La transmission de la force depuis le goujon pour efforts tranchants dans les dalles en béton armé doit être assurée des deux côtés par une armature de statique supplémentaire. La formation structurelle illustrée ci-après est impérative lors de l'utilisation des **goujons pour charges lourdes ebea QD-43 et QD-51** avec l'**ebea KP-Type H**. L'armature supplémentaire représentée ici est l'armature minimale requise pour les raccords de dalles et est à prévoir tant pour le côté goujon que pour le côté gaine.

Section

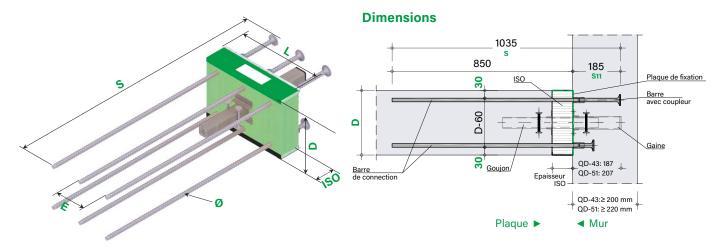


	Armatures supplémentaires sur site pour raccords de dalles en béton armé B500									
Pos.	Quantité	Armat.	Désignation	Pour type	Remarque	Longueur min.	Fournisseur			
1a	10	ø 12	Etrier en U	QD-43(q), QD-51(q)		1.5 h + l _{bd,net}	sur site			
^{օս} 1 b	2	ø 12	Cage d'étriers standards	QD-43(q), QD-51(q)	200 ≤ h ≤ 340 mm	1.5 h + I _{bd,net}	RUWA			
2	10	ø14	Barre d'armature	QD-43(q), QD-51(q)	en continu	3.0 h + 2 l _{bd,net}	sur site			
3	2	ø 12	Barre d'armature	QD-51(q)	en continu	3.0 h + 2 l _{bd,net}	sur site			

3,0*h

Notice de montage

La procédure de montage de l'**ebea KP de Type H** est décrite ci-dessous. Les instructions générales pour le chantier s'appliquent également (voir page 125, **«ebea KP – Notice de montage»**).



Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type J - Description du produit

Description du produit

Les raccords de dalles en porte-à-faux **ebea KP-Type J** sont utilisés partout où, en raison des étapes de travail ou des exigences de coffrage, les connexions doivent être réalisées en deux parties. L'**ebea KP-Type J** est conçu en deux parties avec une armature à visser et un goujon pour l'effort tranchant. Il sert à absorber les forces transversales dans les deux directions (± V). Selon le choix du goujon, une force horizontale (± H) peut également être absorbée. Le produit est disponible dans un seul type de design. Il n'y a **pas d'éléments KPE** pour l'**ebea KP-Type J**.

Paramètre du corps isolant et des composants en acier

L Longueur élémentD Hauteur d'élémentS Longueur barresD Diamètre barres

ISO Epaisseur isolante S11 Gaine profonde pour goujon

Système statique

Réalisations et matériaux utilisés

Matériaux utilisés	VE1
Isolation	XPS, laine de roche (SW)
Barres de traction	1.4362
Goujons pour efforts tranchants	1.4462 / UHFB
Barre de montage	Acier inoxydable

VE1 Version entièrement en acier inox pour classe de résistance à la corrosion III (moyenne)

Dimensions du corps thermo-isolant (ISO)

Corns	isolant	Standard						
Corps	isolant	Min.	Max	Niveau				
Hauteur	D [mm]	200	350	10/20/30				
Longueur	L [mm]	3	-					
Epaisseur	ISO [mm]	60, 80						

Les dimensions des corps thermo-isolants dépendent de la géométrie des éléments de construction et des exigences thermiques. Le goujon de type QD-51(q) n'est disponible qu'à partir d'une hauteur d'élément de 260 mm.

Dimensions des barres d'armature

Longue	ır barres \$ [mm]	Diamètre barı	res Ø = 14 mm
•	averses de fer	S11 = 187 mm (QD-43[q])	S11 = 207 mm (QD-51[q])
VE1	ISO 60-80	1037	1057

La longueur de la barre S détermine la taille de l'élément. Les principales dimensions figurent dans le Tableau à côté de «Dimensions des barres d'armature». La dimension S11 ne peut pas être choisie librement pour l'ebea KP-Type J. Une épaisseur de paroi minimale de 200 mm est requise pour l'utilisation du goujon QD-43(q); 220 mm sont requis pour le goujon QD-51(q).

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type J – Tableaux de dimensionnement

Tableaux de dimensionnement

La reprise de l'effort tranchant et autres forces normales se fait par des éléments séparés. Pour les éléments KP-Type J, il n'est pas possible de choisir librement le nombre des composants. Vous pouvez utiliser le formulaire de commande actuel pour déterminer les valeurs de calcul de configurations individuelles ou de différentes épaisseurs d'isolation.

Moments d	le cal	cul (±	± M _{Rd})	, résis	stance	à l'e	ffort t	ranch	ant (±	۷ _{Rd} /	$\pm H_{Rd}$	et fo	rces r	norma	les (±	:N _{Rd})	
\mathbf{M}_{Rd} [kNm/pcs] (N _d = 0) \mathbf{V}_{Rd} [kN/pcs] (H _d = 0)								Épaiss	eur de l'	isolation	ISO 60						
$\mathbf{H}_{Rd}[kN/pcs] (V_d = 0)$ $\mathbf{N}_{Rd}[kN/pcs] (M_d = 0)$																	
Hauteur standard ISO)		ΛD	-43			OD.	43q	•		QD	_51		T	ΛD.	·51a	
Ds [mm]	·	M _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N_{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}
200		25	60	45	392	25	60	-	392								
220		28	67	50	392	28	67	-	392								
240		32	74	56	392	32	74	-	392		_	-				-	
250		34	77	58	392	34	77	-	392								
260		36	77	58	392	36	77	-	392	36	82	62	392	36	82	-	392
280		40	77	58	392	40	77	-	392	40	89	67	392	40	89	-	392
300		44	74	56	392	44	74	-	392	44	88	66	392	44	88	-	392
320		48	74	56	392	48	74	-	392	48	95	71	392	48	95	-	392
350		54	74	56	392	54	74	-	392	54	103	77	392	54	103	-	392
$N_{Rd}[kN/pcs] (M_d = 0)$ Hauteur standard ISO)		OD	-43			OD-	43a			QD	-51	•	T	OD-	·51q	
Ds [mm]		M_{Rd}	V _{Rd}	H _{Rd}	N _{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N_{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}	M _{Rd}	V _{Rd}	H _{Rd}	N _{Rd}
200		24	60	45	383	24	60	-	383								
220		28	67	50	383	28	67	-	383								
240		32	74	56	383	32	74	-	383								
250		34	77	58	383	34	77	-	383								
260		36	77	58	383	36	77	-	383	36	82	62	383	36	82	-	383
280		39	77	58	383	39	77	-	383	39	89	67	383	39	89	-	383
300		43	74	56	383	43	74	-	383	43	88	66	383	43	88	-	383
		47	74	56	383	47	74	-	383	47	95	71	383	47	95	-	383
320							74	_	383	53	103	77	383	53	100		200
350		53	74	56	383	53	74		303		103	- ' '	303	ეკ	103	-	383
350	on [pcs]		74 ø 14 sur (ø 14 sur (deux nive			ø 14 sur d				ø 14 sur (
350 tité de barres de tractio			ø 14 sur d					leux nive									
350 tité de barres de tractio			ø 14 sur d	leux nive		3×		deux nive I					aux				
350 tité de barres de tractic Quantité de goujon [pc:	s]		ø 14 sur d	leux nive	aux	3×		deux nive I	aux 3				aux	3×			383 eaux

Distances minimales d'installation

L'entraxe minimal entre deux éléments est de 350 m pour le goujon de type QD-43(q). Pour le type de goujon QD-51(q), l'entraxe minimal est de 350 mm. L'entraxe minimal par rapport aux bords de dalle est de $a_{min}/2$. L'entraxe minimal par rapport aux bords des dalles est de $a_{min}/2$. Pour des entraxes plus importants, les résistances ultimes peuvent être demandées à l'équipe technique **RUWA** ou se référer aux pages 194 et 197.

Indications

- Les valeurs de capacité de charge sont calculées pour une résistance minimale du béton de C25/30. Pour une résistance du béton de C20/25, les valeurs indiquées doivent être réduites d'un facteur de 0.8.
- Les valeurs indiquées sont basées sur un recouvrement de béton de 30 mm en haut et en bas.
- Les valeurs indiquées sont valides lorsque la planification est conforme aux normes SIA ou aux Eurocodes en vigueur.
- La capacité de charge des éléments raccordés doit être vérifiée et garantie par l'ingénieur.
- La transmission des forces entre le raccord de dalles en porte-à-faux et l'élément en béton armé doit être assurée par une armature supplémentaire sur site. (voir page 122, «Armatures réalisées sur site»).

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type J – Spécifications

Spécifications

La définition des éléments KP-Type J se base sur les paramètres suivants, cf. notre formulaire de commande ebea KP:

Produits standard

Туре-		ion (2)	Qté barres (3)	Elém. de pousée		(4) ım]	+ Dou	ıblage 5)	ı	iso		L _{min} (6)	KP	-700	KP- KP-1	800 1000
élément (1)	Sous- type	Réalisati	n × Ø [pcs] × [mm]	nS [pcs]	Stand	./Total	+IO [mm]	+IU [mm]	Art	Epais- seur [mm]	[mm]	[mm]	S11 (7) [mm]	S12 (8) [mm]	H [mm]	DH [mm]
KP-Type J	QD-51	VE1	×		220				S'	W80		350				

Paramètres additionnels pour réalisations spéciales

Doublage du corps thermo-isolant

Un doublage du corps d'isolation thermique n'est pas possible avec l'ebea KP de Type J.

Longueurs spéciales

La longueur de cet élément n'est pas variable.

Nombre des éléments de poussée

Le nombre de goujons **n'est pas** variable pour cet élément. Pour une transmission de force plus élevée, plusieurs éléments sont posés les uns à côté des autres (respecter la distance de pose minimale).

Résistance au feu

La résistance au feu est incluse dans les **éléments ebea KP** et dépend du matériau d'isolation choisi. SW: REI 120 / XPS: REI 60.

Effets sismiques

La reprise de forces horizontales supplémentaires est possible si les types de goujons QD-43 ou QD-51 sont choisis. Les forces horizontales ne peuvent pas être reprises si des goujons mobiles transversalement sont utilisés.

Sans traverses de fer

Les ebea KP de Type J sont livrés en standard sans fers transversaux. Il n'y a pas d'autres options disponibles.

Entretoises

Si les éléments ne sont pas disposés en continu, on peut les alterner avec des entretoises KP. Indiquer la quantité requise dans le **formulaire de commande ebea KP**. Les entretoises KP ont les mêmes caractéristiques que le matériau isolant du raccord de dalle en porte-à-faux. Les entretoises mesurent 1.0 m de longueur.

Sans traverses	Entretoise	Remarques
de fer (10)	[m′] (11)	/N°
	3.0	

KP-800

KP-1000

[mm]

DH

[mm]

Parasismique (9)

Résistance

an fen

REI120

Conductivité thermique équivalente \(\lambda \)eq

$\lambda_{eq}[W/(mK)]$		SW sans plaq	ues de silicate	
Ds [mm]	QD-43	QD-43q	QD-51	QD-51q
200	0.3687	0.3687	-	-
220	0.3388	0.3388	-	-
240	0.3139	0.3139	-	-
250	0.3029	0.3029	-	-
260	0.2928	0.2928	0.3407	0.3407
280	0.2748	0.2748	0.3192	0.3192
300	0.2591	0.2591	0.3006	0.3006
320	0.2454	0.2454	0.2843	0.2843
350	0.2278	0.2278	0.2634	0.2634
Longueur standard L _{st}		3	50	

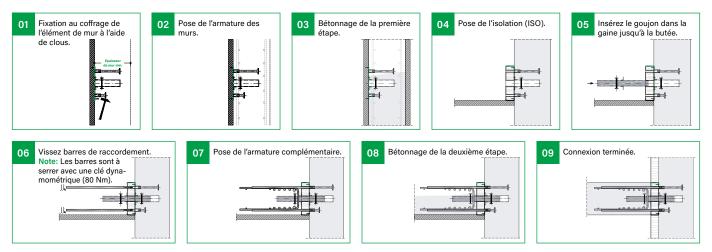
Les conductivités thermiques équivalentes λ eq de nos types standards sont indiquées dans le tableau ci-contre.

Les valeurs des différents éléments peuvent être déterminées et affichées automatiquement avec le formulaire de commande ebea KP. Notre support technique est à votre disposition.

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP-Type J - Spécifications

Armature complémentaire

La transmission de la force depuis le goujon pour efforts tranchants dans les dalles en béton armé doit être assurée des deux côtés par une armature de statique supplémentaire. La formation structurelle illustrée ci-après est impérative lors de l'utilisation des **goujons pour charges lourdes ebea QD-43 et QD-51** avec l'**ebea KP-Type J**. L'armature supplémentaire représentée ici est l'armature minimale requise pour les raccords de dalles et est à prévoir tant pour le côté goujon que pour le côté gaine.

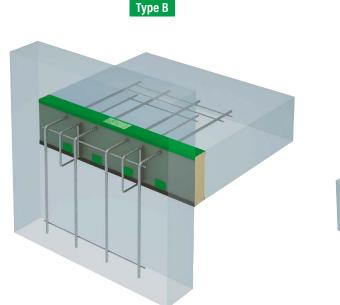

Section

Complément avec armature simple (a) Complément avec cage d'étriers standards ebea (b) 1a 25 8 Ø 8-Barre de montage I _ 2 었 2/ر h/2 52 35|40|40|40| |35|40|40|403 ≥1,5*h + I_{bd,ne} Vue d'ensemble 2 1a ou (1b) 30|40|40|40| 3,0*h

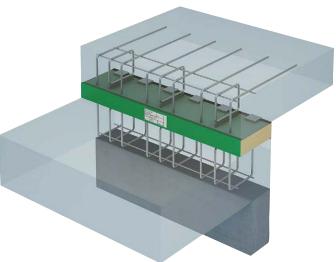
	Armatures supplémentaires sur site pour raccords de dalles en béton armé B500									
Pos.	Quantité	Armat.	Désignation	Pour type	Remarque	Longueur min.	Fournisseur			
1a	10	ø 12	Etrier en U	QD-43(q), QD-51(q)		1.5 h + l _{bd,net}	sur site			
1 b	2	ø 12	Cage d'étriers standards	QD-43(q), QD-51(q)	200 ≤ h ≤ 340 mm	1.5 h + l _{bd,net}	RUWA			
2	10	ø 14	Barre d'armature	QD-43(q), QD-51(q)	en continu	3.0 h + 2 l _{bd,net}	sur site			
3	2	ø 12	Barre d'armature	QD-51(q)	en continu	3.0 h + 2 l _{bd,net}	sur site			

Notice de montage

La procédure de montage de l'**ebea KP de Type J** est décrite ci-dessous. Les instructions générales pour le chantier s'appliquent également (voir page 125, **«ebea KP – Notice de montage»**).

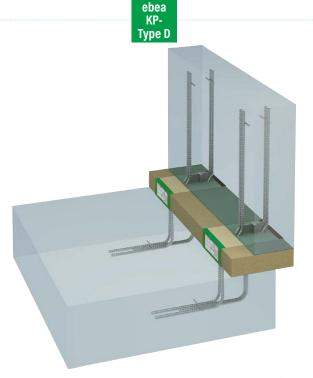


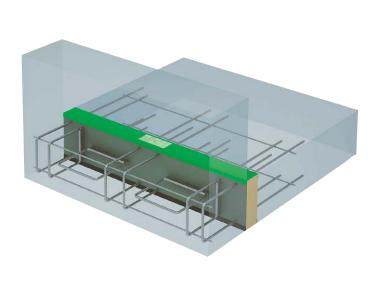
ebea KP - Solutions spéciales


Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP - Solutions spéciales

Eléments spéciaux

Les **éléments spéciaux ebea KP** comprennent des composants standards (barres de traction, éléments de poussée, tampons de pression, corps isolants etc.). Ces composants peuvent être adaptés à la plupart des exigences individuelles de la construction. Les **éléments ebea KP spéciaux** sont définis et commandés à l'aide d'un dessin.


Séparation thermique pour raccord paroi-plafond avec transmission de couple.


Type C

Séparation thermique pour éléments apposés tels qu'auvents.

Type K

Séparation thermique pour parapets décalés.

Résistance portante en toute direction. Combinaison d'éléments standards ebea KP.

ebea KP - Solutions spéciales

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP - Solutions spéciales

ebea KP-Type B

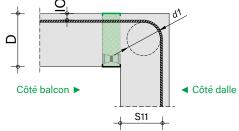
Les éléments ebea KP-Type B constituent des alternatives aux éléments ebea KP(E)-100 et peuvent être adaptés aux situations de montage respectives. Grâce à une disposition modifiée des barres de traction, les éléments KP sont parfaitement adaptés à la géométrie individuelle de la construction. Lors de la planification et la réalisation de pliages et boucles, il faut respecter les diamètres de mandrin selon la norme SIA 262:2013, 5.2.4.

Diamètres minimaux de mandrin pour pliages	d ₁ =15Ø

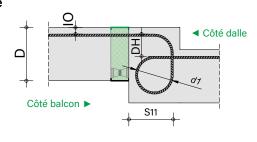
Moments de calcul (- M_{Rd})

Lorsqu'on applique les diamètres minimaux de mandrin (**d**₁), on peut parfaitement utiliser les barres de traction. Pour connaître les valeurs des moments de calcul, on peut donc consulter les tableaux dans la description des produits respectifs. Dans le cas où le diamètre de mandrin serait inférieur au minimum, les valeurs indiquées dans le tableau doivent être réduites en fonction du diamètre de mandrin (**d**) effectif.

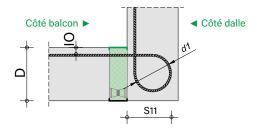
Condition	Mesure
d≥d 1	non
d < d ₁	Un réduction éventuelle pour les valeurs du tableau (M _{Rd}) est requise

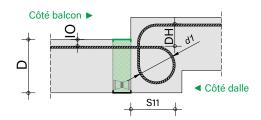

Résistance à l'effort tranchant (± V_{Rd})

Les valeurs de résistance restent les mêmes que celles figurant dans les tableaux de dimensionnement des types KP(E)-100.


Indications

- Lors de la commande d'éléments ebea KP-Type B il faut indiquer les mesures «S11» et selon le type «DH». Les éléments ebea KP-Type B sont définis et commandés à l'aide d'un dessin.
- L'ingénieur de projet doit assurer que les charges de l'élément en porte-à-faux puissent être transmises à l'élément de raccord au moyen d'une armature appropriée.


Variations possibles en fonction de la situation de montage


Type B1 Pliage vers le bas

Type B3 Balcon avec décalage vers le haut

Type B2 Pliage vers le haut

Type B4 Balcon avec décalage vers le bas

Conseil

Pour toute **solution spéciale ebea KP**, vous pouvez contacter notre assistance technique. Forts d'une expérience avec des objets de toutes tailles, nos ingénieurs vous proposent des solutions pratiques.

ebea KP - Armatures réalisées sur site

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP - Armatures réalisées sur site

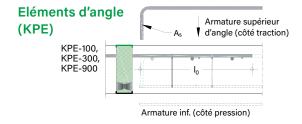
Armatures réalisées sur site

Armature de raccord pour éléments - M_{Rd} et ± M_{Rd} Eléments KP normaux

Eléments KP normaux

(- M_{Rd})

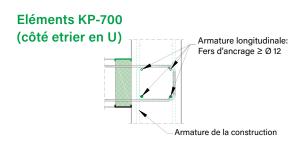
KP-100,
KP-300,
KP-1100

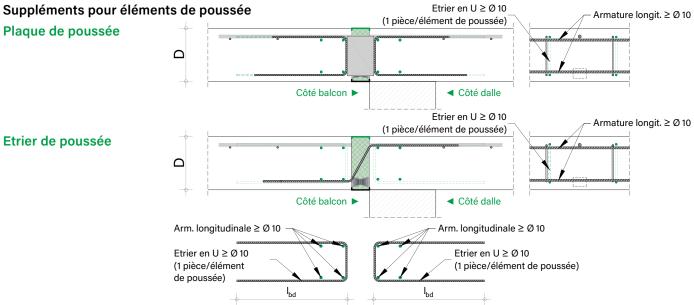

Armature sup.
(côté traction)

As

Armature sup.
(côté traction)

As


Armature inf. (côté pression)


Eléments KP normaux (± M_{Rd})

KP-200, KP-700, KP-900, KP-1000, KP-1200

Armature inf.

Les forces de traction transmises par l'élément doivent être reprises par une armature appropriée aussi bien du côté dalle que balcon. Les sections d'armature (A_s) peuvent être déterminées sur la base de la capacité portante de couple de l'élément. La valeur plus élevée de la limite d'élasticité (f_{sd}) de l'inox dans le raccord de dalles en porte-à-faux implique une plus grande surface de section transversale (A_s) du béton armé pour l'armature de connexion sur site. La faisabilité et la facilité d'installation de l'armature sur site doivent être vérifiées par l'ingénieur et, si nécessaire, adaptées à la situation. Dans tous les cas, les barres transversales doivent être prises en compte dans la conception avec et sans barres transversales.

Bords de dalle libres

En présence de zones libres entre les raccords de dalle en porte-à-faux, les bords des éléments doivent être considérés comme bords libres. Selon la norme SIA 262:2013, § 5.5.3.5, il faut prévoir tout au long des bords un profil en acier d'armature.

Les Armatures réalisées sur site susmentionnées constituent l'armature minimale, compte tenu des efforts tranchants des raccords de dalles en porte-à-faux ebea KP et doivent être modifiées en fonction de la situation de montage et la taille des éléments de raccord. La calculation de l'élément construit de part et d'autre de la console ebea KP est effectué par l'ingénieur responsable et doit respecter la norme SIA 262:2013 respectivement Eurocode. La transmission des efforts dans la dalle en béton armé doit être assurée selon les normes (Moment, Effort tranchant etc.).

ebea KP - Indication

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP - Indication

Disposition des éléments et joints de dilatation

Disposition des éléments

La disposition des éléments ebea KP n'est représentée que sous forme schématique et doit toujours être déterminée de manière spécifique et sur la base d'un calcul statique.

Attention! Dans le cas d'un agencement ponctuel des éléments, les zones intermédiaires doivent également être remplies d'isolation thermique. Ces éléments intermédiaires peuvent être commandés en utilisant le formulaire de commande pour ebea KP. La hauteur et l'épaisseur des éléments intermédiaires ebea KP de 1.0 m de longueur peuvent être sélectionnées avec les éléments en porteà-faux.

Comme alternative, les éléments intermédiaires peuvent également être livrés par l'entreprise de construction. Toutefois il faut s'assurer que ces pièces correspondent qualitativement à l'isolation des éléments ebea KP. Les exigeances de résistance au feu doivent également être respectées.

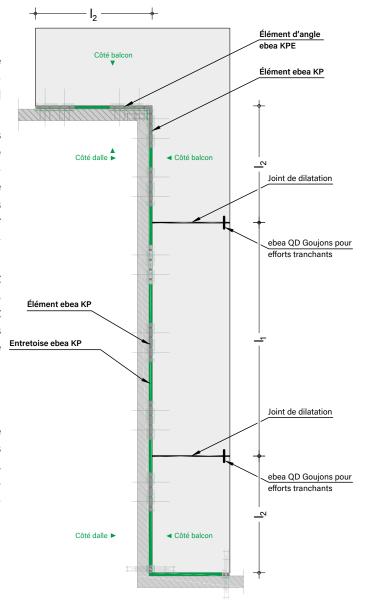
Réalisation des joints de dilatation

La transmission de l'effort tranchant dans les joints de dilatation doit être assurée par des goujons. Les **goujons ebea QD** s'y prêtent très bien. Dans les joints aux angles, on utilisera des douilles permettant le déplacement transversal. Le choix du type et du nombre des goujons à disposer se base sur un calcul statique.

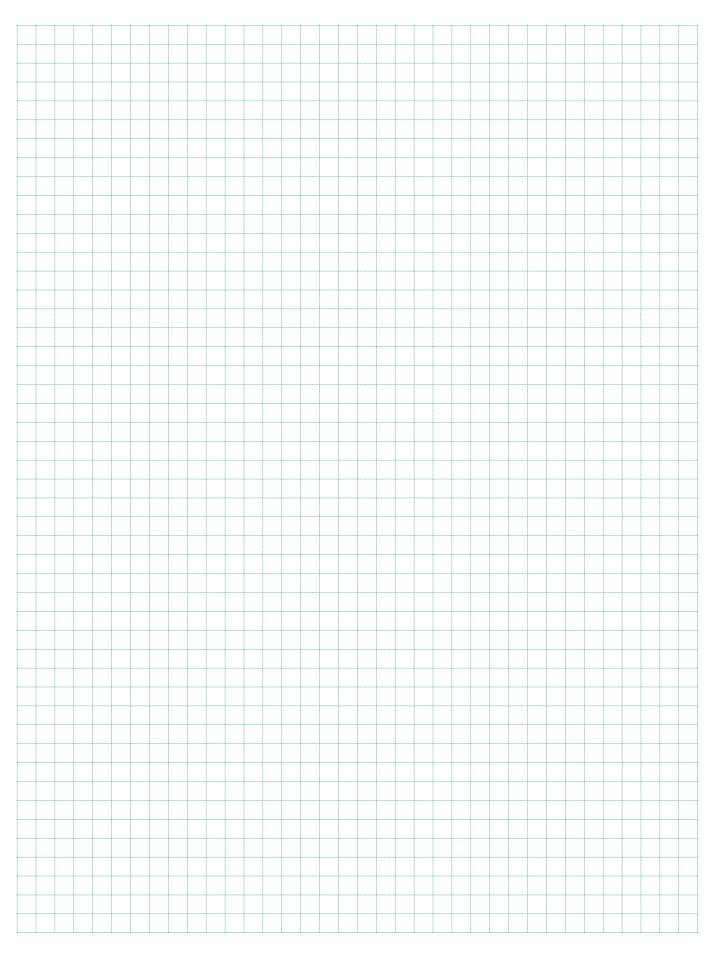
La réalisation des joints de dilatation doit être adéquate.

Ecart des joints pour éléments à plaques de poussée

KP-100, KPE-100, KP-200, KP-300, KPE-300, KP-500, KP-700, KP-800, KP-900, KPE-900, KP-1000

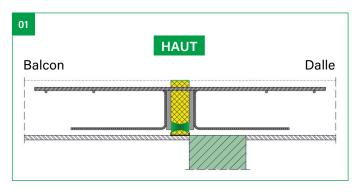

Règle générale:	I₁≤12.0 m
Aux angles:	I ₂ ≤ 6.0 m

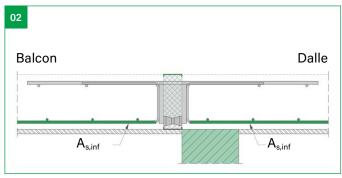
Ecart des joints pour éléments à étriers d'effort tranchant


KP-600, KP-1100, KP-1200

Règle générale:	I₁≤8.0 m
Aux angles:	I ₂ ≤4.0 m

L'équipe technique **RUWA** se tient à votre disposition pour tout écart de joint en dehors des longueurs données.

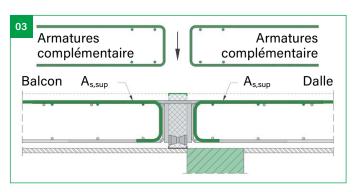

Notes

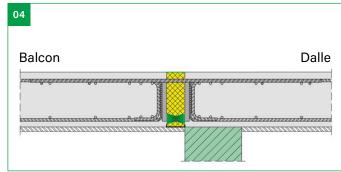


ebea KP - Notice de montage

Technique d'armature | ebea KP Raccords isolants de dalles en porte-à-faux | ebea KP - Notice de montage

Etapes importantes pour le montage des éléments ebea KP




Etape 1

Montage des **éléments ebea KP** avec le recouvrement vert vers le haut. Pour les **ebea KP-600** et **ebea KP-1100** il faut faire attention au sens de pose (côtés Balcon/Dalle). Voir l'étiquette.

Etape 2

Pose de l'armature inférieur et fixation aux **éléments ebea KP**

Etape 3

Pose des armatures complémentaires (voir chapitre «Armatures réalisées sur site» à la page 122) respectivement de l'armature supérieur et fixation aux éléments ebea KP.

Etape 4

Bétonnage de l'ouvrage. Pour garantir la stabilité des éléments ebea KP il est recommandé de bétonner les deux côtés à la fois. Pour le cas ou le balcon et la dalle ne peuvent pas être bétonnés en même temps il faudra assurer le positionnement des éléments ebea KP en fonction.

Indications pour le chantier

- Lors du déchargement et du stockage sur le chantier, les éléments doivent être traités avec précaution. Les éléments endommagés ne doivent pas être utilisés.
- Les éléments avec corps isolant en laine de roche doivent être protégés contre l'humidité.
- Lors de la pose des éléments il faut faire attention aux sens (Balcon/dalle et haut/bas). Les étiquettes et la différence de couleur des recouvrements (vert/en haut, noir/en bas) sont une aide.
- Les types **ebea KP-600** et **ebea KP-1100** doivent être posés avec la barre de l'étrier de poussée positionnées vers le balcon.
- Sans le consentement préalable de la société **ebea**, les éléments ne doivent pas être découpés ou raccourcis et les barres transversales soudées ne doivent pas être enlevées.
- Respecter les remarques relatives aux Armatures réalisées sur site ainsi que la disposition des joints de dilatation.
- Prévoir un écart suffisant des conduites et encoches par rapport aux éléments.
- La pose correcte des éléments ainsi que leurs situation et positionnement selon la planification devront être contrôlés en même temps que l'armature par l'ingénieur responsable.

