INSTITUT FÜR SPORTBODENTECHNIK

IST Consulting GmbH

CONICA AG Industriestrasse 26 8207 Schaffhausen

04. September 2022

PRÜFBERICHT

IST Referenz: 9361/TH/GL

Betreff: Kunststoffbelag für Leichtathletikanlagen

Typprüfung gemäss EN 14877:2006

"Kunststoffflächen auf Sportanlagen im Freien - Anforderungen"

Produktbeschreibung

Produktname **CONIPUR SP**

Beschreibung Kunststoffbelag mit Spritzbeschichtung, 2-lagig

> 2 mm PUR Spritzbeschichtung, mit rotem EPDM

> > Granulat 0.5-1.5 mm

PUR gebundenes schwarzes SBR Granulat 1-4 mm 11 mm

IST Probe Nr. 8861

Probeneingang

24. Februar 2022 Datum

Menge 4 Abschnitte 50 x 50 cm

Testzeitraum 25. Februar 2022 bis 02. September 2022

> Dieser Bericht besteht aus 4 Seiten. Die Reproduktion dieses Berichts ist nur als Ganzes und originalgetreu zulässig. Prüfungen die der Akkreditierung ISO 17025:2018 unterliegen, sind markiert●

Die Messunsicherheit wird bei der Bewertung der Konformität nicht berücksichtigt. Alle Resultate beziehen sich auf die eingebauten Materialien und/oder eingereichten Proben.

Nach SN EN ISO 17025:2018 durch die Schweizer Akkreditierungsstelle (SAS) des Schweizer Staatssekretariats für Wirtschaft (SECO) akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

CH 8264 Eschenz Tel CH +41 52 740 3005/Lab -06 Akkreditiert gemäss ISO 17025 für: Bälisteigstr. 2, Switzerland Tel. BRD +49 7735 98658 DIN 18032-2; 18035-6; 18035-7; www.ist-ch.com E-mail ist-mailbox@bluewin.ch EN 14904+14877+15330, IAAF; FIFA

Anerkanntes Prüflabor, Umfang siehe Zertifikate:

Untersuchungsverfahren

Die Untersuchungen wurden gemäss den verschiedenen EN Normen durchgeführt, die in EN 14877:2013 genannt sind. Sofern Untersuchungsergebnisse aus anderen Prüfberichten übernommen wurden, sind diese markiert mit *

Untersuchungsergebnisse

In der untenstehenden Tabelle sind die Mittelwerte der Untersuchungsergebnisse den Anforderungen von EN 14877:2013 gegenübergestellt.

<u>Tabelle 1</u> Mittelwerte der Untersuchungsergebnisse

Untersuchungsverfahren		Untersuchungsergebnisse		Anforderungen EN 14877:2013
		Mittelwerte	Bereich	Leichtathletik- anlagen
Reibung • EN 13036-4 trocken nass	=T [1] [1]	99 57	97 / 102 56 / 59	trocken 80 – 110 nass 55 – 110
Kraftabbau ● EN 14808	<a [%] [%] [%]</a 	39 40 41	39 / 40 39 / 40 41 / 42	25 – 70
Vertikale Verformung • EN 14809 @ 10°C @ 23°C @ 40°C	D [mm] [mm]	2.0 2.1 2.3	1.9 / 2.2 2.1 / 2.2 2.3 / 2.4	≤ 3
Dicke (total) (absolut)• EN 1969	[mm]	15.0 13.1	14.7 / 15.3 12.9 / 13.2	≥ 10
Wasserdurchlässigkeit EN 12616	[mm/h]	>150		>150
Verschleisswiderstand ISO 5470-1	[g]	0.73	0.72 / 0.74	≤ 4
Zugversuch EN 12230 Zugfestigkeit Buchdehnung	[N/mm²] [%]	0.52 44	0.48 / 0.57 40 / 54	≥ 0.4 ≥ 40
Spikesfestigkeit EN 148 Zugfestigkeit Buchdehnung	10 [N/mm²] [%]	0.43 41	0.41 / 0.46 40 / 42	≥ 0.4 ≥ 40

Untersuchungsverfahren		Untersuchungsergebnisse		Anforderungen
		Mittelwerte	Bereich	EN 14877
Verhalten nach Heisswasser und Hitze-Beanspruchung – EN 13817 und EN 13744				
Zugfestigkeit Bruchdehnung	[N/mm²] [%]	0.54 47	0.53 / 0.56 42 / 63	≥ 0.4 ≥ 40
Spikesfestigkeit EN 14810				
Zugfestigkeit Buchdehnung	[N/mm2] [%]	0.51 53	0.61 / 0.62 42 / 50	≥ 0.4 ≥ 40
Kraftabbau ● @ 23°C	[%]	39	39 / 40	25 – 70

Untersuchungsverfahren		Untersuchungsergebnisse		Anforderungen
		Mittelwerte	Bereich	EN 14877
Verhalten nach UV-Bestrahlung gemäss EN 14836*				
Verschleisswiderstand Prüfrad H18 + 1000g	[g]	0.70	0.70 / 0.71	≤ 4
Farbänderung ● ISO 20105-A02	Klasse	3 - 4	3 - 4	min. 3

Beurteilung

Der getestete Kunststoffbelag **CONIPUR SP** erfüllte die Anforderungen von EN 14877:2013 wie in Tabelle 2 aufgeführt, insoweit die Ergebnisse in den vorgängigen Tabellen aufgeführt sind.

Tabelle 2: Erfüllte Eigenschaften

Eigenschaft	Paragraf EN 14877 Tabelle 3 Mehrzweck	Ergänzende Information
Reibung	Zeile 3.1.1	Trocken und nass
Kraftabbau	Zeile 3.1.2	Leichtathletik Klassifizierung Typ SA 25-70
Vertikale Verformung	Zeile 3.1.3	
Dicke (total)	Zeile 3.2.6	
Wasserdurchlässigkeit	Zeile 3.2.1	
Verschleisswiderstand	Zeile 3.2.2	
Farbänderung	Zeile 3.2.3	
Zugfestigkeit	Zeile 3.2.4	
Spikes-Widerstand	Zeile 3.2.5	

Karin Glasze-Kolitzus Qualitäts-Management TORAL ASSOCIATION 2.

Thomas Hartmann Laborleiter

Hatman